Lecture 16: static RMQ, LCA

Range Minimum Queries (RMQ):

- static array A of n numbers
- query RMQ(i, j) = min{A[d],..., A[j]}
- naive solution: O(n?) lookup table, O(1) query time
- cartesian tree: [Gabow, Bentley, Tarjan - STOC 84]
e root = min in array, say A[i]
e left subtree: recurse on A[l],..., Afi — 1]

e right subtree: recurse on Afi +1],..., A[n]

e O(n) time construction (next lecture)

A=1[17,0, 36, 16, 23, 15, 42, 18, 20]

0
/\
17 15
/\
16 18

36| 23 [42] 20

= RMQ(4, j) reduces to LCA(%, j)

Lowest Common Ancestor (LCA):

- static tree on n nodes
- O(1) time/query, O(n) space [Harel and Tarjan - SICOMP 84, Berkman and Vishkin - STAM J.

Comput 1993 |
- simplification [Bender and Farach-Colton - LATIN 00] (today)
- dynamic: O(1) insert/delete leaves, O(1) subdivide/merge edges [Cole and Hariharan - SODA 99|

LCA in a complete BST

- word RAM model
- LCA(a, b) found by most significant bit of a & b

Reduce LCA to RMQ=+1

- RMQ+1: adjacent elements differ by +1
- take Euler tour of the tree and store depths of visited nodes.

0 17 0 15 16|36 16 23 16 15 18 42 |18 20 18 15 O
o 1 0 1 23 2 3 2 1 2 3,2 3 2 1 0

T
- LCA(i,7) = index of min depth in range
Solving RMQ+1 via Indirection
i J
v v
(a) ’ n elements ‘
(b)’ /2lgn H 2lgn ‘
v vV v
(c) ’ 2n/1gn elements ‘

- split into groups of %lgn
- a summary RMQ DS on the 27/ign minimums

RMQ(i,00) in i’s group
RMQ(i,j) = min ¢ RMQ(—o00,j) in j’s group
RMQ(> i’s group, < j’s group) in the summary structure

Lookup Table for Groups

e index of RMQ(%, j) is invariant under translation
= subtract A[1] from all A[i]’s so A[1] =0

= 23len = v/n distinet group types (£1)
e 1<i,j< %lgn SO (% lgn)? possible group queries

e group query output requires O(lglgn) bits
= lookup table requires O(y/nlg?nlglgn) = o(n) bits.

RMQ on the Summary Structure

- adjacent elements in the summary are not necessarily +1
- trivial solution of storing all answers V(i, j) is not good enough (O(n?/1g*n))
- we need general RMQ DS of O(nlgn) space & time and O(1) query (|summary| = 27/ign)

e store answer from any start point (n choices) and interval of length = power of 2 (Ign choices)
= O(nlgn) space (and time via dynamic programming)

e any interval of length k& can be covered by two (possibly overlapping) intervals of length 2llgk]

— 66—
—4—
—4—

Before and after [1]

Before: [Berkman and Vishkin - STAM J. Comput. 1993]
- split into groups of lgn = lookup table is too big
- split every group into groups of Iglgn

After: [Fischer and Heun - CPM 2006]

- avoid the cartesian tree needed for RMQ — LCA — RMQ +1

- groups are no longer in a £1 form

- construct all possible cartesian trees of s = ilgn elements (Catalan number < 4%).

References

[1] M. A. Bender, M. Farach-Colton, The LCA Problem Revisited, LATIN 2000: 88-94.

[2] O. Berkman and U. Vishkin. Recursive star-tree parallel data structure, SIAM J. Comput.,
22(2), 1993.

[3] R. Cole, R. Hariharan, Dynamic LCA Queries on Trees, SODA 1999: 235-244.

[4] J. Fischer, V. Heun, Theoretical and Practical Improvements on the RMQ-Problem, with Ap-
plications to LCA and LCE, CPM 2006: 36-48.

[5] H. N. Gabow, J. L. Bentley, R. E. Tarjan, Scaling and Related Techniques for Geometry
Problems, STOC 1984: 135-143.

[6] D.Harel, R. E. Tarjan, Fast Algorithms for Finding Nearest Common Ancestors, STAM Journal
on Computing, 13(2): 338-355, 1984.

