Cell-probe model: (for lower bounds)
- memory (DS) consists of \(w\)-bit cells
- just count # reads & writes
- computation is free
- typically assume \(w \geq \lg n\) or even \(w = \Theta(\lg n)\)

Dynamic connectivity lower bound \([\text{Pătraşcu & Demaine-}
\text{STOC 2004 & SICOMP 2006}]\)
- \(\Omega(\lg n)\) cell probes/op.
- holds even with amortization; here just worst case

Proof:
- consider \(n^2 \times n^2\) grid with perfect matching between consec. columns \(i\) & \(i+1\) \(\rightarrow\) permutation \(\pi_i\)
- block operations:
 - update \((i, \pi)\): \(\pi_i \leftarrow \pi\)
 \(= O(n^2)\) edge insertions/deletions
 - verify-sum \((i, \pi)\): \(\sum_{j=1}^{i} \pi_j = \pi?\) (\(\Sigma = \text{compose}\))
 \(= O(n^2)\) connectivity queries
- **Claim**: \(\sqrt{n^2}\) updates + \(\sqrt{n^2}\) verify-sums require \(\Omega(\sqrt{n^2} \cdot \sqrt{n^2} \cdot \lg n)\) time (cell probes)
 \(\Rightarrow\) dynamic connectivity requires \(\Omega(\lg n)\) time
Construction of bad access sequence:
- permutation π in each $\text{update}(i, \pi)$ is chosen uniformly at random
- permutation π in each $\text{verify-sum}(i, \pi)$ is the correct sum (but DS doesn't know)
- i's follow bit-reversal sequence: $000 \rightarrow 000 \rightarrow 001 \rightarrow 011 \rightarrow 010 \rightarrow 100 \rightarrow 110 \rightarrow 111$
- pairs: $\text{verify-sum}(i, \frac{\pi}{i})$
 $\text{update-sum}(i, \pi_{\text{random}})$
- tree over time:

- left & right subtrees of each node interleave

- **Claim:** for every node v in tree, say with l leaves in its subtree, during right subtree of v, must do $\Omega(l \sqrt{n})$ cell probes in expectation that read cells written during left subtree last

- summing over all levels (read r of write w is counted only at $\text{lca}(r, w)$)
 $\Rightarrow \Omega(n \lg n)$ lower bound overall
Proof of claim:
- left subtree has \(\frac{l}{2} \) updates with \(\frac{l}{2} \) rand. perms.
- any encoding of these permutations must use \(\Omega(l \sqrt{n} \lg n) \) bits [info. theory/Kolmogorov arg.]
- if claim doesn't hold, we'll derive a smaller encoding \(\Rightarrow \) contradiction.
- set up: know the "past" (before \(v \)'s subtree)
- goal: encode (verified) sums in right subtree
 \(\Rightarrow \) can recover (updated) perms. in left subtree

Warmup: query is \(\text{sum}(i) \rightarrow \frac{1}{2^n} \prod_j \)
- let \(R = \{ \text{cells read during right subtree}\} \)
 \(|W| = |\text{cells written during left subtree}| \)
- encode \(R \cap W \) (address & contents of each cell)
 \(\Rightarrow |R \cap W| \cdot O(\lg n) \) bits [assume poly. space, \(W = \Theta(\lg n) \)]
- decoding strategy for sums in right subtree:
 - simulate sum queries in right subtree
 - to read cell written in right subtree \(\Rightarrow \) easy
 in left subtree \(\Rightarrow \) \(R \cap W \)
 in past \(\Rightarrow \) known

\(\Rightarrow |R \cap W| \cdot O(\lg n) = \Omega(l \sqrt{n} \lg n) \)
\(\Rightarrow |R \cap W| = \Omega(l \sqrt{n}) \) \(\checkmark \)
Verify-sum instead of sum:
- permutations π given to verify-sum
 encode the information we want
- set up:
 - know (fixed) past
 - don’t know updates in left subtree
 - don’t know queries in right subtree
 - but know queries returned YES
- decoding idea:
 - simulate all possible input permutations
 for each query in right subtree
 - know one returns YES; all others return NO
- trouble: incorrect query simulation reads cells R'≠R
 - if read reR'\setminus R, it must be incorrect
 - but can’t tell whether re\setminus W'R or past\setminus(R\setminus W)
 - can’t afford to encode R or W
- idea: encode separator S for R\setminus W & W\setminus R
- when decoding, to read a cell
 written in right subtree ⇒ easy
 in R\setminus W ⇒ encoded explicitly
 in S ⇒ must be in past ⇒ known
 not in S ⇒ must not be in R ⇒ wrong guess ⇒ ABORT
- only one simulation will return YES;
 rest will return NO or ABORT.

⇒ |encoding| = \Omega(\log n)
Separators
- given universe \(U \) & a number \(m \)
- separator family & for size-\(m \) sets if
 \[\forall A, B \subseteq U \text{ with } |A|, |B| \leq m \text{ & } A \cap B = \emptyset: \]
 \[\exists C \subseteq U \text{ such that } A \subseteq C \text{ & } B \subseteq U \setminus C \]
- claim: there is a separator family &
 for size-\(m \) sets with \(|S| \leq 2^{O(m + \log |U|)} \)
 proof sketch: perfect hash family \(H \)
 with \(|H| \leq 2^{O(m + \log |U|)} \)
 gives mapping from \(A \cup B \) to \(O(m) \)-size table
 - store bit in each table entry: \(A \) vs. \(B \)
 - \(2^{O(m)} \) such bit vectors
 \[\Rightarrow 2^{O(m)} \cdot 2^{O(m + \log |U|)} = 2^{O(m + \log |U|)} \]

Encoding: \(R \cap W + \text{ separator of } R \cap W \cup W \cup R \)
 size = \(|R \cap W| \cdot O(\log n) + O(|R| + |W| + \log \log n) \)
 \[= \Omega(l\sqrt{n}\log n) \]
 \[\Rightarrow |R \cap W| = \Omega(l\sqrt{n}) \text{ or } |R| + |W| = \Omega(l\sqrt{n}\log n) \]
 \[\Rightarrow \text{claim} \]
 \[\Rightarrow \Omega(\log n) \text{ directly} \]
 Formally: if all ops. = \(o(\log n) \) \(\Rightarrow |R| + |W| = o(\log n) \)
 then claim holds