Binary search trees (BSTs)
- again focus on access(x), keys \{1, 2, ..., n^3\}

Models:
1. **worst case**: \(\Theta(\log n)\)
 - *LB*: access deepest node \(\Rightarrow\) depth \(\geq \log n\)
 - *UB*: red-black trees, AVL trees, ...
2. **stochastic/static**: \(p_i = f_i / m\)
 - dynamic program for OPT: \([\text{Gilbert & Moore 1959}]\)
 - guess which key \(r\) to put at root (\(n\) choices)
 \(\Rightarrow\) two subproblems: left \((< r)\) & right \((> r)\)
 - in general, subproblem = interval of keys
 \(\Rightarrow\) \(O(n^2)\) subproblems
 - cost(problem) = 1 + \(Pr_{\text{left}}\cdot \text{cost(left)}\)
 + \(Pr_{\text{right}}\cdot \text{cost(right)}\)
 \(\Rightarrow\) \(O(n^2)\) time
 - smarter DP runs in \(O(n^3)\) time \([\text{Knuth 1971}]\)

OPEN: \(o(n^3)\) time possible?

- static OPT between \(H - \log H\) & \(H + 3\)
 where entropy \(H = \sum_i p_i \log 1 / p_i\)
 \([\text{Huffman trees achieve } H + O(1) \text{ but not BST}]\)
(3) dynamic: one-finger model
 - finger starts at BST root for each access
 - pay 1 for each left, right, parent move
 or rotate [with parent]
 - must touch x

BST access algorithms:

1. Transpose analog: rotate x once toward root
 - for uniform random accesses,
 all BSTs equally likely in limit
 ⇒ expected height \(O(\sqrt{n}) \)
 \[\text{[Allen & Munro - JACM 1978]}\]

2. Move To Root: rotate x until it's at root
 \(= 2 \ln 2 \approx 1.38 \cdot \text{stochastic OPT} \)
 \(\neq O(1) \cdot \text{static OPT} \)
3. Splay trees: variation on MTR [Sleator & Tarjan-1985]

- Zig-zig case:
 \[
 \begin{array}{c}
 Z \quad \xrightarrow{\text{rotate } y} \quad Z \\
 y - x - y \\
 \end{array}
 \]

- Zig-zag case:
 \[
 \begin{array}{c}
 y - x - y \\
 \end{array}
 \]

- Key feature: ≤ half nodes on x path go down
 - At end, may need single rotation
 - \(O(1) \) static OPT

\[
\text{OPEN: } = O(1) \cdot \text{dynamic OPT?}
\]

\[\text{dynamic optimality conjecture} \]
Access lemma: just count rotations
- assign arbitrary weight \(w_i \) to each elt \(i \)
- define \(W(x) = \text{sum of weights of keys in subtree rooted at } x \)
- potential \(\Phi = \sum_x \log W(x) \)

Eg. \(w_i = 1 \) \(\forall i \) balanced \(\Rightarrow \Phi = \Theta(n) \)
path \(\Rightarrow \Phi = \Theta(n \log n) \)

- amortized cost of one splay step \((\text{zig-zag})\)
 \(\leq 3 \cdot \left[\log W^{\text{new}}(x) - \log W^{\text{old}}(x) \right] \)
 (some checking + concavity of \(\log \))
 (note rotation changes only \(W(x) \) & \(W(x)'s \ parent \))

- amortized cost of \(\text{access}(x) \) telescopes:
 \(\leq 3 \cdot \left[\log W^{\text{new}}(x) - \log W^{\text{old}}(x) \right] + 1 \) \(= W(\text{tree}) \) final single rotation

- \(\min \Phi \geq \sum_i \log w_i \); \(\max \Phi \leq n \log W(\text{tree}) \)

- \(\max \Phi - \min \Phi \leq \sum_i \left[\log W(\text{tree}) - \log w_i \right] \)
 bound on am. cost to \(\text{access}(i) \)

- assuming \(m = \Omega(\text{this startup cost}) \),
 \(\text{access}(x) \) costs \(O(\log W(\text{tree}) - \log W^{\text{old}}(x)) \)
 \(= O(\log W(\text{tree}) - \log W_x) \)
Consequences of access lemma:

1. **Logarithmic:** \(w_i = 1 \ \forall i \Rightarrow W(\text{tree}) = n \)
 \(\Rightarrow O(\lg n) \)

 Startup cost: \(O(n \lg n) \)

2. **Static Optimality:** \(w_i = p_i \Rightarrow W(\text{tree}) = 1 \)
 \(\Rightarrow O(1 - \lg p_x) = O(\lg \frac{1}{p_x}) \)

 Startup cost: \(O(H) \)

3. **Static Finger Theorem:** Fix "finger" at a node \(f \)
 \(\frac{1}{1 + (i - f)^2} \Rightarrow W(\text{tree}) \leq \sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6} \)
 \(\Rightarrow O(1 + \frac{1}{(i - f)^2}) = O(\lg [\frac{a + |i - f|]}{\text{distance to finger}}) \)

 Startup cost: \(O(n \lg n) \)

4. **Working-set Theorem:** \(O(1 + \lg t_i(x_i)) \)

 Where \(t_i(x) = \# \text{distinct } y \text{s accessed since last access to } x \text{ before time } i \) (including \(y \) itself)

 \(w_x \) at time \(i = \frac{1}{t_i(x)^2} \Rightarrow W(\text{tree}) \leq \sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6} \)
 \(\Rightarrow O(1 + \lg t_i(x_i)^2) = O(1 + \lg t_i(x_i)) \) for access

 \(\text{next } t_{i+1}(x_i) = 1 \Rightarrow w_{x_i} \uparrow 1 \)

 Some \(t_{i+1}(y) = 1 + t_i(y) \Rightarrow w_y \downarrow \text{slightly} \)

 \(\Rightarrow \) no \(w_y \) increases except \(w_{x_i} \)

 \(\Rightarrow \) no \(w(y) \) increases, even \(W(x_i) = W(\text{tree}) \) (fixed)

 \(\Rightarrow \Phi \) does not increase from reweighting

 Startup cost: \(O(n \lg n) \)
More bounds:
5. **Scanning theorem**: (a.k.a. sequential access theorem)
 access sequence 1, 2, ..., n costs \(O(n) \)
 from any initial tree
 [Tarjan - Combinatorica 1985]
6. **Dynamic finger theorem**:
 \(\text{access}(x_i) \) costs \(O(\log(2 + |x_i - x_{i-1}|)) \)
 amortized
 (assuming \(m \geq n \))

OPEN:
7. **Deque conjecture**:
 [Tarjan - Combinatorica 1985]
 two fingers \(f_1 \leq f_2 \), each access either ++\(f_i \) or --\(f_i \)
 \(\Rightarrow O(m+n) \) total cost
 \(- O((m+n) \times (m+n)) \)
 [Sundar - Combinatorica 1992]
8. **Traversal conjecture**:
 [Sleator & Tarjan - JACM 1985]
 access elts. from preorder traversal of fixed BST
 costs \(O(n) \), from any initial tree
9. **Monotonicity conjecture**:
 [Iacono - personal comm.]
 removing an access into the sequence
 never increases the total cost
10. **Unified conjecture**:
 [Iacono - SODA 2001]
 \(\text{access}(x_i) \) costs \(O(\log \min_y [t_i(y) + |x_i - y| + 2]) \)
 amortized
 “fast if close to something recent”
 —achievable by pointer-machine DS
 [Iacono - SODA 2001; Bädoiu, Cole, Demaine, Iacono - Algorithmica]
Bound implications: [Iacono - SWAT 2000 & SODA 2001]

unified → working set → static optimality → dynamic finger → static finger