
6.851: Advanced Data Structures, Fall 2017

Prof. Erik Demaine, Adam Hesterberg, Jayson Lynch

Problem Set 5 Solutions

Due: Wednesday, October 11, 2017 at noon

Problem 5.1 [Ordered File Maintenance without Extra Space].
Describe a data structure for inserting n elements into an initially empty array of length exactly

n in O(lg3 n) amortized swaps per operation.
That is, you’re given n spots for items. Initially, each spot is empty. One at a time, you’re

given an item to insert into a spot and an order relative to the existing items; you may swap other
items’ positions if necessary. You want to perform all n inserts using O(n lg3 n) total swaps.

Solution:
Partition the n insertions into groups of sizes n

2 , n
4 , . . . , 2, 1. We’ll spend O(n lg2 n) swaps on

each group, for a total of O(n lg3 n).
Before inserting the group of size 2i, we’ll read the entire array and space the already-inserted

elements out perfectly (into blocks of size 2lgn−i consecutive items), which takes O(n) swaps for
each group, or O(n lg n) swaps overall.

To process the group of size 2i, pretend first that we could ignore the already-inserted items
and do ordered file maintenance on the 2i+1 empty slots available. As covered in class, that takes
O(lg2(2i)) < c lg2 n amortized swaps per operation, or a total of c2i lg2 n swaps for the group.

Since there are already-inserted items, when we add an item to an “empty” slot in the pretended
problem, we might have to move up to 2lgn−i consecutive items; when we swap items in the
pretended problem, we have to swap 2lgn−i items. So, each of the c2i lg2 n swaps in the pretend
problem requires at most 2lgn−i swaps to implement, for a total of at most cn lg2 n swaps for the
whole group, or cn lg3 n swaps for all lg n groups, as desired.

1


