
6.851: Advanced Data Structures, Fall 2017

Prof. Erik Demaine, Adam Hesterberg, Jayson Lynch

Problem Set 4 Solutions

Due: Wednesday, October 11, 2017 at noon

Problem 4.1 [Dynamic Dictionary with Working-Set Property].
A binary search tree has the worst-case working-set property if every access xi costs

O(log ti) worst-case time, where ti is the number of distinct keys accessed since the last access
to key xi.

Describe and analyze a dynamic dictionary (not necessarily a BST) that has the working-set
property. Your data structure should:

(a) use O(n) space, where n is the current number of items in the dictionary;

(b) support searching for key xi in O(log ti) worst-case time, where ti is the number of distinct
keys accessed since the insertion or last access to the key xi; and

(c) support insertions and deletions in O(log n) amortized time.

Hint: Consider representing your dictionary as a list of binary search trees of increasing size.
Solution:
Maintain a list of log log n balanced binary search trees with the ith tree containing 22

i
keys.

The largest tree will contain all keys in the dictionary and the smaller trees act as “caches” that
contain recently accessed keys.

Insertions and deletions are performed by inserting/deleting the key in each of the log log n
trees. The time to perform an insert/delete operation on the ith tree is O(log 22

i
) = 2i. The total

time to perform an insert/delete operation, therefore, is
∑log logn

i=0 2i which is O(log n). The size
constraints on each of the trees are maintained via a least-recently used eviction policy. Each tree
has an associated BST which contains its keys sorted by their last access time. When inserting a
key into a full tree the least-recently accessed key in that tree is found and deleted.

To search for a key xi, we query each of the log log n trees in order of increasing size until the
key is found or it has been determined that the key is not in any of the trees. If the jth tree was
the first tree in the list containing xi, then we insert xi into the j − 1 smaller trees. The cost of
searching the jth tree for xi dominates the cost of inserting xi into the j − 1 smaller trees. The
total time required to lookup the key xi, therefore, is

∑j
i=0 2i which is O(2j).

Suppose that ti elements were accessed since the last search for key xi. These elements plus
xi will be contained in the dlog log(ti + 1)eth tree which contains the ti + 1 most recently accessed
keys. The total time to search for the key xi, by our previous argument, is bounded by the time to
search the dlog log(ti + 1)eth tree which is O(log ti).

Finally, we note that we can grow the data structure in linear time by appending a new tree to
the list whose contents are copied from the old largest tree. Shrinking the data structure consists
of just deleting the largest tree, provided all keys are already present in the second largest tree.
Various resize criteria work without effecting the amortized bounds — for example the dictionary
can grow whenever its capacity N < n2 and can shrink whenever N4 > n. This gives O(log n)
amortized time bounds for the insert and delete operations. It is also possible to deamortize, but
this was not required of student solutions.

1


