Today: Memory Hierarchies II (of 3)
- ordered file maintenance (for B-tree in L7)
- list labeling (for persistence in L1)
- cache-oblivious priority queue

Ordered file maintenance: [Itai, Konheim, Rotem -ICALP 1981; Bender, Demaine, Farach-Colton -FOCS 2000]

Goal: Store N elements in specified order in an array of size $O(N)$ with gaps of size $O(1)$
 \Rightarrow scanning K consecutive elts. costs $O(\frac{K}{B})$ mem.trans.
 Subject to elt. deletion & insertion between 2 elts. by re-arranging elts. in array interval of $O(\log^2 N)$ amortized elts. via $O(1)$ interleaved scans
 \Rightarrow costs $O(\frac{\log^2 N}{B})$ amortized memory transfers

Idea: upon updating element, ensure locally not too dense/sparse by redistributing elements in surrounding interval.
- intervals defined by nodes in complete binary tree on $\Theta(\log n)$-size chunks of array.
Update:

1. update leaf by rewriting $\Theta(\log n)$-size chunk
2. walk up tree until reach ancestor whose
 \[
 \text{density(nod)} = \frac{\# \text{elts. stored below node}}{\# \text{array slots in interval}}
 \]
 is within threshold at its depth d:
 \[
 \begin{align*}
 \text{density} & \geq \frac{1}{2} - \frac{1}{4} \cdot \frac{d}{h} \in \left[\frac{1}{4}, \frac{1}{2}\right] \quad \text{(not too sparse)} \\
 \text{density} & \leq \frac{3}{4} + \frac{1}{4} \cdot \frac{d}{h} \in \left[\frac{3}{4}, 1\right] \quad \text{(not too dense)}
 \end{align*}
 \]
3. evenly rebalance elements below node

Analysis:

- thresholds get tighter as we go up

 \Rightarrow rebalancing node puts children FURTH within threshold:
 \[
 \left| \text{density} - \text{threshold} \right| \approx \frac{1}{4} \cdot \frac{1}{h} = \Theta\left(\frac{1}{\log n}\right)
 \]

- this node won't be rebalanced again until
 ≥ 1 child out of threshold

 $\Rightarrow \Omega\left(\frac{\text{capacity}}{\log N}\right)$ updates to charge to

 $\Omega(1)$ because leaf = chunk has size $\Theta(\log N)$

$\Rightarrow \Theta(\log N)$ amortized rebuild cost
to update element below a node

- each leaf is below $h = \Theta(\log N)$ ancestors

$\Rightarrow \Theta(\log^2 N)$ amortized cost per update

Theorem: $\Omega(\log^2 N)$ necessary \[\text{[Bulánek, Koucký, Saks - SICOMP 2013]}\]
List labeling: closely related problem
maintain explicit integer label in each node in a linked list, subject to insert/delete node here, such that labels are monotone at all times
(label = index in array)

<table>
<thead>
<tr>
<th>label space</th>
<th>best known time/update</th>
</tr>
</thead>
<tbody>
<tr>
<td>((1+\varepsilon)n \cdots n \lg n)</td>
<td>(\Theta(\lg^2 n)) (\leq) (\Theta(\lg n)) (\leq) (\Theta(1))</td>
</tr>
<tr>
<td>(n^{1+\varepsilon} \cdots n)</td>
<td>(\Theta(\lg n)) (\leq) (\Theta(1))</td>
</tr>
<tr>
<td>(2^n)</td>
<td>trivial</td>
</tr>
</tbody>
</table>

List order maintenance: easier problem, from L1
maintain linked list subject to insert/delete node here & order query: is node \(x\) before node \(y\)?
- \(O(1)\) solution via indirection: [Dietz & Sleator - STOC 1987; Bender, Cole, Demaine, Farach-Colton, Zito - ESA 2002]

\[
\Theta\left(\frac{n}{\lg n}\right) \leq \Theta(\lg n) \leq \Theta(1)
\]

- implicit node label = (top label, bottom label)
 \(O(\lg n)\) bits
 \(\Rightarrow\) can compare two labels in \(O(1)\) time
 \(\Rightarrow\) top updates change many implicit labels at once
 \(\Rightarrow\) bottom chunks slow top updates by \(\Theta(\lg n)\) factor
 \(\Rightarrow\) \(O(1)\) amortized cost
 \(\Rightarrow\) worst-case bounds possible [same refs.]
Cache-oblivious priority queue: (as in Arge et al. 2007)
- $\lg \lg n$ levels of size $N, N^{3/4}, N^{1/2}, \ldots$, $c = O(1)$
- level $X^{3/2}$ has 1 up-buffer of size $X^{3/2}$
 & $\leq X^{1/2}$ down buffers each of size $\Theta(X)$
 where all but first is const frac. full

Layout: store levels in order, small to large

Invariants:
- down buffers ordered in a level (but unsorted)
- down buffers $@X^{3/2} <$ down buffers $@X^{9/4}$
- down buffers < up buffer in same level
Find-min: smallest element in smallest down buffer
Delete-min: delete from down buffer; if empty, pull

Insert:
1. append to bottom up buffer
2. swap into bottom down buffers if necessary
3. if up buffer overflows: push

Push X elements into level $X^{3/2}$
all down buffers at level X^1 & below

1. sort elements (see L9 for cache-obliv. alg.)
2. distribute among down & up buffers:
 - scan elements, visiting down buts. in order
 - when down but. overflows, split in half & link
 - when down buts. overflows, move last to up but.
 - when up but. overflows, push it up to $X^{9/4}$

Pull X smallest elts. from level $X^{3/2}$ (& above)

1. sort first two down buts. & extract leading elts.
2. if $<X$: pull $X^{3/2}$ smallest elts. from $X^{9/4}$ (& above)
 sort these elements & up buffer
 refill up buffer to previous size
 with largest elements
 extract needed smallest elts. till X total
 split rest up into down buffers
Analysis: push/pull at level $X^{3/2}$ sans recursion costs $O\left(\frac{x}{B} \log m_B \frac{x}{B}\right)$ memory transfers
- assume all levels of size $\leq M$ stay in cache
- tall cache assumption: $M > B^a$ (say)
- push at level $X^{3/2} \geq B^a \Rightarrow X > B^{4/3} \Rightarrow \frac{x}{B} > 1$
 - sort costs $O\left(\frac{x}{B} \log m_B \frac{x}{B}\right)$ memory transfers
 - distribute costs $O\left(x^{1/2} + \frac{x}{B}\right)$ mem. transf.
 - startup per down but. \uparrow \rightarrow \text{scan}
 - if $X > B^a$ then cost $= O\left(\frac{x}{B}\right)$
- else: only one such level: $B^{4/3} \leq X \leq B^a$
 - can keep 1 block per down but. in cache: $X \leq B^a \Rightarrow X^{1/2} \leq B \leq \frac{M}{B}$ by tall cache
 - so just pay $O\left(\frac{x}{B}\right)$ at this level too
- pull at level $X^{3/2} > B^a$:
 - sort costs $O\left(\frac{x}{B} \log m_B \frac{x}{B}\right)$ memory transfers
 - another sort of $X^{3/2}$ elts. only when recursing \Rightarrow charge to recursive pull

Total: each element goes up & then down
(roughly—real proof harder)
& costs $O\left(\frac{1}{B} \log m_B \frac{x}{B}\right)$ per push & pull @ X
$\Rightarrow O\left(\frac{1}{B} \log m_B \frac{x}{B}\right)$ amortized cost per element

exp. geometric \Rightarrow geometric
$= O\left(\frac{1}{B} \log m_B \frac{n}{B}\right)$.