
6.849: Geometric Folding Algorithms, Spring 2017

Prof. Erik Demaine, Martin Demaine, Adam Hesterberg, Jason Ku, Jayson Lynch

Problem Set 4 Solutions

Due: Wednesday, March 8, 2017

Solve Problem 4.1 and either Problem 4.2 or 4.3.

Problem 4.1 [Mandatory, Collaboration OK]. On each problem set, we will ask you to
write a problem (solved or unsolved) related to the material covered in class. The problem should
be original to the best of your knowledge, so be creative and diverse! Folding can be applied to
mathematics, computation, engineering, architecture, biology, and beyond, so write a problem that
is related to a field that interests you. If you write a problem whose solution can be solved from
the material covered in class, then we may adapt your problem for future problem sets. If you
pose a problem whose solution is not yet known, we may try to solve it in class during our open
problem sessions, or it may become inspiration for a class project. Feel free to include solutions
or commentary for your problem. While writing a problem is required, your submission will be
graded generously, so have fun and share with us your exploration of the course material.

Solve ONE of the two problems below.

Problem 4.2 [Collaboration OK]. Design and fold (but do not cut) a fold-and-cut model using
the straight-skeleton method. Submit a PDF of your design (including crease pattern, in vector
format) on Gradescope, and submit the folded version physically. We highly recommend that you
use a vector drawing program that can compute accurate intersections, such as Inkscape (free),
Cinderella (mostly free), Adobe Illustrator (commercial), AutoDesk Fusion 360 (free for students),
or Rhino3D (commercial). Use your judgment of reasonable complexity to work within your folding
ability.

Problem 4.3 [Collaboration OK]. Consider a convex polygon P whose vertices (x1, y1),
(x2, y2), . . . , (xn, yn) satisfy −1 ≤ xi, yi ≤ 1. You seek an efficient algorithm describing how to fold
and cut P from a square piece of paper with vertices (±1,±1).

(a) Show that there exists a crease pattern with O(n) creases which can be folded so that one
cut produces P .

(b) Find as efficient an algorithm as you can to compute such a crease pattern. Any correct
algorithm will earn at least partial credit. Can you get O(n log n) or even O(n) time?

Solution by Christine Soh and Albert Soh:

(a) We simply triangulate the polygon by choosing a vertex and making a mountain crease
from it to each non-adjacent vertex (n−3 = O(n) creases). This creates n−2 triangles; in each
of these triangles, make valley creases from the incenter to all three vertices (folding along the
angular bisector) and one mountain crease from the incenter to an edge that triangle shares
with the polygon (4(n − 2) = O(n) creases). Finally, make a valley crease that is the angle
bisector of the reflex angle of each vertex out to the edge of the paper (n = O(n) creases).
Altogether, there are O(n) creases.

1

(b) The triangulation in the previous section suffices. Or:

The convex polygon P has vertices (x1, y1), (x2, y2), ..., (xn, yn). Let’s call the starting ver-
tex (xn, yn). We create mountain creases from this vertex to all the non-adjacent vertices
(x2, y2), (x3, y3), ..., (xn−2, yn−2), creating n − 2 triangles, which will be indexed by the ith
vertex such that the triangle T1 has vertices (x1, y1), (x2, y2), (xn, yn), and the triangle Ti

has vertices (xi, yi), (xi+1, yi+1), (xn, yn). There are n − 2 creases made, and assuming that
making a crease (i.e. drawing a colored line between two points on the coordinate system)
takes O(1) time, the run time for this part is O(n).

The triangle Ti has sides sin = vivi+1, sii = vnvi+1, and sii+1 = vi+1vn, and the side lengths
are as follows:

|si1 | =
√

(xi+1 − xi)2 + (yi+1 − yi)2,

|sii | =
√

(xi+1 − x1)2 + (yi+1 − y1)2,

|si+1| =
√

(x1 − xi)2 + (y1 − yi)2.

The coordinates of the incenter oi has coordinates (oix , oiy) such that

oix =
|s1|x1 + |si|xi + |si+1|xi+1

|s1|+ |si|+ |si+1|

oiy =
|s1|y1 + |si|yi + |si+1|yi+1

|s1|+ |si|+ |si+1|

Create creases from the incenter of each triangle to the three vertices of the triangle. This
should take O(n) time as well.

Next, we crease the perpendicular down from the incenter through the side of the polyhedron
all the way to the edge of the paper for each triangle. To find the point on the side of
the polygon where the perpendicular intersects in order to go through the incenter, we can
project the vector < vi, oi > onto the vector < vi, vi+1 > and find the endpoint. Creating
these creases will take O(n) time.

2

Finally, we need the angle bisectors of the reflex angles of each vertex. For vertex vi, consider
the two side unit vectors ~si1 =< vi−1√

(xi−1−xi)2+(yi−1−yi)2
, vi√

(xi−1−xi)2+(yi−1−yi)2
> and ~si2 =<

vi√
(xi+1−xi)2+(yi+1−yi)2

, vi+1√
(xi+1−xi)2+(yi+1−yi)2

> The vector of the angle bisector is ~si1 + ~si2 .

Fold along this vector to the edge of the triangle, which I also will assume will take O(1)
time. Since there are n vertices, this will also take O(n) time, which will result in an overall
runtime of O(n). This is based on the assumption that the runtime for creasing and finding
the incenter and angle bisectors is in constant (O(1)) time.

3

