
6.849: Geometric Folding Algorithms, Spring 2017

Prof. Erik Demaine, Martin Demaine, Adam Hesterberg, Jason Ku, Jayson Lynch

Problem Set 2 Solutions

Due: Wednesday, February 22, 2017

Solve Problem 2.1 and either Problem 2.2 or 2.3.

Problem 2.1 [Mandatory, Collaboration OK]. On each problem set, we will ask you to
write a problem (solved or unsolved) related to the material covered in class. The problem should
be original to the best of your knowledge, so be creative and diverse! Folding can be applied to
mathematics, computation, engineering, architecture, biology, and beyond, so write a problem that
is related to a field that interests you. If you write a problem whose solution can be solved from
the material covered in class, then we may adapt your problem for future problem sets. If you
pose a problem whose solution is not yet known, we may try to solve it in class during our open
problem sessions, or it may become inspiration for a class project. Feel free to include solutions
or commentary for your problem. While writing a problem is required, your submission will be
graded generously, so have fun and share with us your exploration of the course material.

Solve ONE of the two problems below.

Problem 2.2 [Collaboration OK]. Which of the four crease patterns on the following page
are flat foldable? Are any simply foldable (foldable by a sequence of simple folds)? Justify each
answer by either submitting a flat folding or arguing why the crease pattern cannot fold flat.

Solution adapted from Laphonchai Jirachuphun
The first three are not flat-foldable. The last is flat foldable via simple folds.
(1) Not flat-foldable. Consider the middle vertex on the crease pattern, pictured in Figure 1a.

Using Kawasaki’s Theorem (1989), the sum of the odd angles must equal that of the even angles
for the paper to be flat foldable. However, we can clearly see from the figure that the sum of the
even angles (X) is larger than the sum of the odd angles (×). Hence, it is not flat foldable.

(2) Not flat-foldable. First, consider the top middle vertex A; refer to Figure 2(a). Since the
left and right angle are larger than ∠BAC, AB and AC have to be given different mountain-valley
assignments. We will only consider the top part of the paper, so we can assume that the paper is
symmetric about the middle vertical axis. Hence, without loss of generality, let AB be the valley
crease and AC be the mountain crease resulting in Figure 2(b). Now consider the horizontal line
DFBCGE: it has to be an all-layers fold with either mountain or valley fold. Since the paper is
symmetric, we will assign a mountain fold resulting in Figure 2(c). Now, we can see that only one of
the vertex G and F is flat foldable, depending on what assignment you give to the line DFBCGE.
In the case shown in Figure 2(c), F is foldable but not G because there is a layer of mountain fold
from DFBCGE right behind it; see Figure 2(d). Therefore, it is not flat foldable.

(Editor comment: the fold transforming Fig 2(c) to (d) is not a simple fold because the layers
being folded are not top-most or bottom-most layers, as is required for simple folding. The primary
reason that (2) is not foldable by a sequence of simple folds is that no non-intersecting flat folded
state exists. Because AB and AC must have different assignment as argued above, one of BD or
CE must be on the outside of BC. If BD is on the outside, all creases incident to F cannot fold
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without also creating new folds on triangle ABC, and similarly for CE. Thus, regardless of what
folding operations are allowed, no flat-folded state exists, so (c) is not (globally) flat foldable.

(3) Not flat-foldable. Consider the triangle ABC in Figure 1b. Since all the angles in the triangle
are all smallest locally within their single-vertex, by the definition of local foldability from Bern
and Hayes (1996), all the sides of the triangle have to have different assignment (either mountain
or valley), which is not possible. Hence, it is not flat foldable.

(4) Flat foldable by simple folds.
(Editors comment: An unassigned crease pattern foldable by a sequence of n simple folds could

have many valid folded states. So, instead of providing some specific folded state of the crease
pattern, we will number creases according to which simple fold they appear in some valid sequence
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(a) Diagram for Problem 2.2, Part (1). (b) Diagram for Problem 2.2, Part (3).

Figure 1: Unfoldability of crease patterns in Problem 2.2.

of simple folds. Figure 3 shows such a labeled seqeuence and can be easily verified.

Problem 2.3 [Collaboration OK]. In class, we saw NP-hardness of the 1D “ruler folding”
problem. Now consider the related problem about single-vertex flat foldability. Given an (unas-
signed) single-vertex hinge pattern (a crease pattern where all creases are optional), decide whether
there is any flat folding that folds at least one of the hinges. Prove that this problem is weakly
NP-hard.

Solution by William Kretschmer
We show (weak) NP-hardness of single-vertex hinge pattern flat-foldability by reduction from

PARTITION, the problem of partitioning a multiset of integers into two multisets that sum to the
same total. Given a PARTITION instance with integers a1, . . . , an and

∑n
i=1 ai = K, we produce

the following hinge pattern:
The angles in Figure 4 are listed up to proportionality; they should all be scaled by a factor of

2π
3K radians (so e.g. segments marked with K have angle 2π

3 radians). We let O denote the hinge
between a0 and an+1.

We claim that a1, . . . , an have a valid partition if and only if this hinge pattern has a nontrivial
flat-folding. In one direction, suppose there is a valid partition of a1, . . . , an into sets S1 and S2

both of sum K
2 . Formally, we also assign a0 to S1 and an+1 to S2. Then, we explicitly leave

unfolded all hinges between adjacent segments that are assigned to the same set in the partition.
If we designate the remaining hinges as a crease pattern, then they satisfy Kawasaki’s theorem for
flat foldability. In particular, there must be an even number of hinges, because each hinge marks a
transition between S1 and S2 (and at least one segment belongs to each of S1 and S2). Additionally,
the alternating sum and difference of (combined) segment angles equals zero, because it totals to
2π
3K (K +

∑
S1 −

∑
S2 −K).

In the other direction, suppose this pattern is nontrivially flat foldable. Observe that the O
must be folded, because otherwise we would have a single segment with angle 4π

3 , a violation
of Kawasaki’s theorem. Thus, the hinge between a0 and a1 must perfectly align with the hinge
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(a) (b)

(c) (d)

Figure 2: Diagram for Problem 2, Part (2).

between an and an+1. Furthermore, the crease along O must be an extreme crease, because the
sum of a1 through an cannot overlap with more than 2π

3 radians, which is not enough to reach
O. We then follow the path along the edge of the disk between the two overlapping hinges. For
any segment wherein we move in the counterclockwise direction, we assign the corresponding ai to
S1 (and conversely, we add clockwise segments to S2). The total clockwise and counterclockwise
displacements relative to the overlapping hinges must be equal because the pattern is flat-folded.
For example, in the picture below, we have

∑
S1 = a1 + a4 = a2 + a3 + a5 =

∑
S2 as a valid

partition. In other words, we partition the ai into two sets S1 and S2 such that
∑

S1 =
∑

S2. This
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Figure 3: A sequence of simple folds that can fold example 1(4).

a0 = K

an+1 = K

a1

a2

...

an

O O

a0 = K
a1

a2 • a3
a4

a5
a6 = K

Figure 4: A diagram of the crease pattern (left) and represented alignment problem (right).

shows that the corresponding PARTITION instance is satisfiable.
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