Origami in Robotics: Fabrication and Self-Folding

Sam Felton 22Mar2017

Autonomous Folding

Origami Engineering

Mathematically...

We can fold anything

Computationally... We can generate fold patterns automatically

Physically...

It's fast and inexpensive

Folded Fabrication

Sreetharan et al. JMM 2012

Printable Machines

Folded Fabrication

Rapidly built from digital blueprints with minimal cost and equipment

Origami-Style Robot Features

Onal et al. IEEE Trans Mech 2015

Origami-inspired printed robots

Cagdas D. Onal, Michael T. Tolley, Robert J. Wood, Daniela Rus

Supplemental Video S2

Onal et al. IEEE Trans Mech 2015

Folded Design

Mechanisms

Sung et al., JMR 2015

Machines

Mehta et al., ISRR 2013

Origami-inspired printed robots

Cagdas D. Onal, Michael T. Tolley, Robert J. Wood, Daniela Rus

Supplemental Video S3

Onal et al. IEEE Trans Mech 2015

Multi-Layered Folded Machines

Advantages

Tailored mechanical properties Better hinge behavior Asymmetric behavior Additional functional properties Multi-layer fold patterns

10 cm

Common Design

Rigid Adhesive Flexural Adhesive Rigid

Alternative Layers

Flexible Circuit Boards

Active Materials

Inelastic Materials

Discontinuous Layers

Fabrication Process

Pop-Up Folding

Pop-Up Book MEMS

Self-Assembly through Folding

Autonomous Assembly

Malachowski et al., Nano 2014

Zirbel et al., J Mech Des 2013

Fast, Parallel Assembly

Hand folded

3D

hour Onal et al. IEEE Trans Mech 2015

Selffolded 5 minutes

Felton et al., Science 2014

Prior Self-Folding

Hydrogel Swelling Guan et al. 2005

Magnetic Field Yi et al. 1999

Prestressed Layers Laflin et al. 2012

Shape Memory Polymers Liu et al. 2012

Capillary Forces Antkowiak et al. 2012

Shape Memory Alloys Hawkes et al. 2010

10 mm

Robotic Self-Folding

- 1. Bidirectional Folds
- 2. Sequential Folding
- 3. Angular Control
- 4. Flexural Hinges
- 5. Centimeter Scale

Prior Self-Folding

Hydrogel Swelling

Guan et al. 2005

Magnetic Field Yi et al. 1999

Prestressed Layers Laflin et al. 2012

Shape Memory Polymers Liu et al. 2012

Capillary Forces Antkowiak et al. 2012

Shape Memory Alloys Hawkes et al. 2010

Shape Memory Polymers

Mechanically programmed **shape change triggered** by environmental stimulus like **heat**.

20

Self-Folding Parameters

Improved Composite

Stiffer

Design Rules through Models

fold angle

thermo-mechanical model

- Accuracy
- Precision
- Max angle

- Hinge torque
- Fold time

Model: Fold Angle

Felton et al., Science 2014

Model: Max Angle

 $\theta = 2\cos^{-1}(C)$

Model: Material Properties

Stress
$$\sigma = \begin{cases} 0 & T \leq T_g - T_r \\ \sigma_c \left(\frac{T - T_g + T_r}{2T_r}\right) & T_g - T_r \leq T \leq T_g + T_r \\ \sigma_c & T \geq T_g + T_r \end{cases}$$

Felton et al., Soft Matter 2013

Model: Hinge Torque

Model: Hinge Torque

Polystyrene: viscoelastic

Feature Size

Max Face Length:

$$\tau_s = \tau_g = g\rho_A W \frac{L^2}{2}$$

$$L_{max} = 97 \text{ mm}$$

Effective range of feature sizes: 10 mm – 100 mm

Min Face Length:

10 mm:	Minimum size
5 mm:	folded, then delaminated
3 mm:	failed to activate

Example – Crane

Design Rules

Contractile stress Contractile thickness Contractile offset

Adhesion strength -

Current Material properties Composite geometry

Hinge geometry }

Hinge geometry Contractile shrink ratio

Maximum Size

Minimum Size

Fold Time

Fold Angle

Max Angle

Complexity

Self-Folding Machines

"M-TRAN" by Distributed System Design Group, Intelligent Systems Institute, AIST

Self-Folding Machines

Machine-level capabilities: 1. Complex geometries 2. Complex mechanisms 3. Autonomous folding

Origamizing Polyhedral Surfaces, Tachi 2010

"Strandbeest" by Jared Tarbell

"M-TRAN" by Distributed System Design Group, Intelligent Systems Institute, AIST

Arbitrary Geometries

Requirements:

- 1.Controlled
- 2. Bidirectional
- 3. Cyclic Folds

Origamizing Polyhedral Surfaces, Tachi 2010

Cyclic Folds

Miura Pattern

Four edge – single

vertex

One degree of freedom

Rigid-foldable thick origami, Tachi 2010

Cyclic Folds

A Method for Building Self-Folding Machines, Felton et al. 2014

Arbitrary Mechanisms

Alberthyang, Wikimedia Commons

Generalizations of Kempe's Universality Theorum, Abbott 2008: Proof that $O(n^d)$ linkage bars needed to trace a **polynomial curve** of power *n* in *d* dimensions.

Computational Design of Mechanical Characters, Coros et al. 2013: Algorithm that **approximates a sketched curve** in two

dimensions.

Self-Folding Linkages

Actuator Coupling

Autonomous Folding

Requirements: 1.Onboard Power 2.Onboard Controls

Si998

8x

Autonomous Folding

- 1. Outer Leg Folding
- 2. Motor Alignment
- 3. Body Folding
- 4. Stand Up
- 5. Inner Leg Folding

1: Outer Leg Folding

00:00

Self-Folding Sensors

Self-Folding Lamp

Swarm Self-Folding

Self-Folding Swarm Bot

Nisser et al. in prep

Swarm Self-Folding

Nisser et al. in prep

Other self-folding methods

Cheaper Composites

Centimeter-Scale Machines

Reversible Folding

`Easy-Bake' Self-Folding

`Easy-Bake' Self-Folding

Self-Folding and Self-Sealing Icosahedron

Bumblebee

Pneumatic Folding

Pneumatic Folding

A Self-folding Dodecahedron

Acknowledgments

l'lii -

Massachusetts Institute of Technology

Prof. Kyujin Cho

Daeyoung Lee

Prof. Robert Wood Dr. Daniel Aukes Kaitlyn Becker Martin Nisser Brian Shin Starr Wen Prof. Erik Demaine Prof. Sangbae Kim Prof. Daniela Rus Joseph Sun

UC San Diego

Prof. Michael Tolley

WPI

Prof. Cagdas Onal

-Expedition in computing for Compiling Printable Programmable Machines

-Programmable Origami for Integration of Self-Assembling Systems in Engineered Structures

Questions?

