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What is origami good for?

- The Miura map fold, invented by Japanese astrophysicist Koryo Miura in the 1970s,
has been used for maps, solar panels in space satellites, and in nature.




What is self-folding®

» Devising ways to make materials fold automatically in response to some
stimulus.

« Example:
Harvard
Microrobotics Lab
(Hawkes, An, Benbernou,
Tanaka, Kim, Demaine,
Rus, Wood 2009)

Programmable Matter by Folding

multiple shapes, compound folds




What is self-folding”

 Devising ways to make materials fold automatically in response to some
stimulus. =

- Example:
Harvard
Microrobotics Lab



Robert WWood's robotics lab at Harvard (2014

Self-Folding Crawler

Harvard Microrobotics Lab




Larry Howell’'s group (BYU, 2014
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arry Howell’'s group (BYU, 2014
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UMass Soft Matter &

Polymer Science Group

« Chris Santangelo & Ryan Hayward
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Self-folding polymer gels

Three-step lithographic patterning of trilayer gels:

L TS SR

Schematic side-view of a fold:

PpMS-BP (stiff)

».-w—ﬂ. Z <-WL.
| | | "~~~ PpMS-BP (stiff)




Self-folding polymer gels

W, » M, PpMS-BP (stiff)

x | éPNIPAM-BP-AAc-RhB (soft)
‘ ~PpMS-BP (stiff)
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Can make origami with simultaneous folds

flapping Randlett bird



Can make origami with simultaneous folds




Can make origami with simultaneous folds




Miura-Ori pattern

Focused on valley

Before release

Focused on mountain



Swelling and Deswelling
(Na, Evans, Bae, Chiappelli, Santangelo, Lang, Hull, Hayward, 2014)




Swelling and Deswelling
(Na, Evans, Bae, Chiappelli, Santangelo, Lang, Hull, Hayward, 2014)




Swelling and Deswelling
(Na, Evans, Bae, Chiappelli, Santangelo, Lang, Hull, Hayward, 2014)




Junhee Na, Ryan Hayward,
Thomas Hull, Chris Santangelo

A more complicated fold

« Origami octahedron-tetrahedron truss (invented by numerous origamists: David
Huffman, Ron Resch, Toshikazu Kawasaki, and others)




Junhee Na, Ryan Hayward,
Octet Truss Thomas Hull, Chris Santangelo

First attempts did not fold very well.




Junhee Na, Ryan Hayward,
Octet Truss Thomas Hull, Chris Santangelo

With more accurate folding angles, it worked much better.

After 15 min

P(Nipma-AAc-BP- RhB) & PpMS-BP - Spin coating
1.5 um, 60 nm




Junhee Na, Ryan Hayward,
Octet Truss Thomas Hull, Chris Santangelo

After 2 hour




Octet Truss




Junhee Na, Ryan Hayward,
Octet Truss Thomas Hull, Chris Santangelo

(confocal fluorescence microscopy image by Junhee Na)




The classic way to fold a Miura-ori

How do we make such animations?



Configuration space of a flat-foldable, deg 4 vertex

Configuration space: n-dimensional parameter space containing points

ﬁ — <,01, Cee pn> where the P7i are all the folding angles will contain the
configuration space containing all such points that satisfy the rigid folding
constraints: Around every vertex we must have

R(l1,p1)R(l2, p2) - - - R(lon, pan) =1
where R([;, p;) is the matrix that rotates 3D space about line [; by i .



Configuration space of a flat-foldable, deg 4 vertex

Configuration space: n-dimensional parameter space containing points

ﬁ — <,01, Cee pn> where the P7i are all the folding angles will contain the
configuration space containing all such points that satisfy the rigid folding
constraints: Around every vertex we must have

R(l1,p1)R(l2, p2) - - - R(lon, pan) =1
where R([;, p;) is the matrix that rotates 3D space about line [; by i .

Apply to this vertex:
= P1 = —P3,P2 = P4

a—pf
cos( 452
tan 22 = U3 ) 2
2 cos(HE) 2
OR

P1 — P3,P2 — —pP4

P1
P2

) L

P4

P3

& O

P4

P2 Sin(aT_B)
2 sin(232)

tan



Configuration space of a flat-foldable, deg 4 vertex

Demo:

Ps

P2

@1= -177.617 @3=—-177.617
@r= 174251  @u=-174.251




Configuration space of a flat-foldable, deg 4 vertex

What does the configuration space look like?

P1 P1
P2 A

@ mode 2
P3
1

P4

P3

P4

Note: (1) The flat state ﬁ — () is a singularity (or a branch point) of the
configuration space manifold. This means that folding from the flat state is
harder than unfolding to the flat state. :-)

(2) The config space is symmetric about the origin (reversing MVs).



What is self-folding®

To self-fold, each crease needs an actuator of some kind.

'\fi (0:)

Each actuator applies torque.

We call the collection of these torques

at all the creases the driving force of the
folding, which we can think of as a
vector field on the configuration space.

k/

“Fold angle: p;

In a separable driving force, eachﬁactuator only
knows its own folding angle. l.e., f = (f1(p1), f2(p2),---, fn(pn))

A conservative driving force is the gradient of a potential function:

f=-vU(p

For example, if we’re lucky we could try the driving force:

fi (pz) — kz (ptarget — /0@)



What is self-folding®

A nice continuous rigid folding ﬁ(s) from a rigid folding ﬁ(O) to ﬁ(l) IS an
arc-length parameterized piecewise (' L curvein a configuration space. At
each point there will be at most two tangent vectors:
dp(s dp(s
U1 (So) = lim Pls) v_(s9) = lim pls)
S— S0 ds s—so— S
The set of all such tangent vectors for all nice continuous rigid foldings passing

through a configuration point projected onto the unit sphere is called the set of
valid tangents.

We define the constrained forces along a nice continuous rigid folding ﬁ(s) to
be f (5) — (5) : f(ﬁ(s)) (the forward force) and P1

f-(s)

7_(s) - f(F(s)) (the backward force).

> 092




What is self-folding®

A nice continuous folding ﬁ(S) from a rigid folding ,5(0) to ﬁ(q) IS
self-foldable by driving force f(g) ifforall s € |0, q) the forward force f ()

at ﬁ(s) on the configuration space is positive and takes on a local maximum
among the valid tangents at S. 01
A

That is, you want the dot product of ”17_|_ (S) and f(ﬁ(s))
to be positive. It makes sense!

P2

We say that a nice continuous folding ,(7(5) is uniquely self-foldable if ﬁ(S) IS
the only nice continuous folding that is self-foldable by f .



What is self-folding®

Theorem: For every rigidly, flat-foldable degree-4 vertex with arbitrary target
and starting configurations, there exists a driving force that makes the vertex
uniquely self-foldable.

,0A1
Proof: Assume that the target ﬁT IS on mode 1. 3
We want to find a potential function U ( p) p(1)
such that
(1) U (o) monotonically decreases along mode 1 5(0)
toward the target state and - P

(2) U (o) monotonically decreases along mode 2
toward the flat state.

P2



Back to the degree 4 case

Theorem: For every rigidly, flat-foldable degree-4 vertex with arbitrary target
and starting configurations, there exists a driving force that makes the vertex
uniquely self-foldable.

,0A1
Proof: Assume that the target ﬁT IS on mode 1. 3
We want to find a potential function U ( p) p(1)
such that
(1) U (o) monotonically decreases along mode 1 5(0)
toward the target state and - P

(2) U (o) monotonically decreases along mode 2
toward the flat state.

The following works: 4

. L, . . 1
U(p) = §||,0— PT||2 — Z §(Pz’ — 7'72)2
i=1

where T; are the coordinates of the target configuration.

P2



Degree 6, symmetric vertex

Consider a symmetric, degree-6 vertex. We want to +1
self-fold it to a target state (1, -3.7, 1, -3.7, 1, -3.7).

The “obvious” driving force would be to push the
creases to be (V, M, V, M, V, M), right?




Degree 6, symmetric vertex

Consider a symmetric, degree-6 vertex. We want to +1
self-fold it to a target state (1, -3.7, 1, -3.7, 1, -3.7). Y

The “obvious” driving force would be to push the
creases to be (V, M, V, M, V, M), right?

Wrong! The desired state is a pop-up vertex.
But we can have a (V, M, V, M, V, M) state and
get a pop-down vertex!




Degree 6, symmetric vertex

How do we “push” the creases to fold through singularities (like the flat,
unfolded state) to the configuration we want?

0 PoOp down pop up
2
mode 1:
P1
o —
05 P1 P2
mode 2:
P1
e o —

P1
pop up p2 pop down



Degree 6, symmetric vertex

How do we “push” the creases to fold through singularities (like the flat,
unfolded state) to the configuration we want?

Here’s the idea: Choose a driving force f that
(a) pushes the state along the desired path (making f+ (S) > ()), and
(b) is orthogonal to other, undesired manifolds at all singular points.

P1
A
undesired 7
folding path —
d
¢ > 092
~d___
\J




Degree 6, symmetric vertex

After some work, we can calculate the configuration space for the
symmetrically-folding degree-6 vertex.

pop down

To self-fold along mode 1, for example, pop up (=/3,7) f 1
we need a driving force

f=(2+V3,1)
| (=m,m/3)3 (243, 1)
in order to be orthogonal to mode 2 at the ‘
flat state.  (:0:0:0 INI) 0 > P2

pop down pop up ? (7Tv _7/3)
P2
mode 1:
AN, 2
P1 02 (7T/337 _7T)

pop up p2  pop down



Degree 6, symmetric vertex

After some work, we can calculate the configuration space for the
symmetrically-folding degree-6 vertex.

pop down

To self-fold along mode 1, for example, pop up (=/3,7) f 1
we need a driving force

f=(2+V3,1)
| (=m,m/3)3 (243, 1)
in order to be orthogonal to mode 2 at the ‘
flat state.  (:0:0:0 INI) 0 > P2

pop down pop up ? (7Tv _7/3)
P2
mode 1:
AN, 2
P1 02 (7T/337 _7T)

mode 2: x Thus we want to drive all
— — creases to be valleys!!!
P1

pop up p2  pop down



Degree 6, symmetric vertex

Amazingly, this actually works in experiments! Tomohiro made a physical
model with loaded springs to model the two different valley torque strengths.




INn conclusion

« We can also prove some multiple-vertex crease patterns can self-fold, while
others cannot!

« See our paper: Self-foldability in rigid origami, Journal of Mechanisms and
Robotics, Vol. 9, No. 2, 2017, 021008-021008-9, doi:10.1115/1.4035558

« Contact: Thomas Hull Tomohiro Tachi
thull@wne.edu tachi@idea.c.u-tokyo.ac.jp
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