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What is origami good for?

• The Miura map fold, invented by Japanese astrophysicist Koryo Miura in the 1970s, 
has been used for maps, solar panels in space satellites, and in nature.



What is self-folding?
• Devising ways to make materials fold automatically in response to some 

stimulus.


• Example:  
Harvard  
Microrobotics Lab 
(Hawkes, An, Benbernou,  
Tanaka, Kim, Demaine,  
Rus, Wood 2009)
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Robert Wood’s robotics lab at Harvard (2014)



Larry Howell’s group (BYU, 2014)



Larry Howell’s group (BYU, 2014)



UMass Soft Matter & Polymer Science Group
• Chris Santangelo & Ryan Hayward

Miura map

Mechanical Meta-materials from Self-folding Polymer Sheets

Development of polymer gels for self-folding origami New mathematical tools

Understanding and designing origami mechanics Tools for mechanical characterization

high swelling

low swelling

Gaussian
curvature

By controlling area fraction of high and low swelling materials, Gaussian curvature can be “programmed.”

confocal
reconstruction
and cross-section

cone with
deficit angle

cone with
excess angle

hyperbolic
disk

spherical
cap

Geometry couples the stiff in-plane stretching to the floppy bending modes of a sheet, leading to novel
mechanical properties.

Scientific Goals: Understanding mechanics of origami structures in order to fabricate “self-folding” polymer gels with designed
mechanical properties.

Apparatus built to simultaneously measure mechanics during 3D visualization

Any self-folding structure is subject to becoming trapped in metastable states or otherwise misfolding.
How do we “program” origami robustly?

counting “misfolds”

forcing sets
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Design Goals: Creating new structures using novel polymer materials (origomu) and developing the design tools to engineer
these new materials.

Non-Euclidean origami

Folding shells introduces new local and global constraints 
leading to snap-through transitions. These transitions depend
on the direction of the fold and the underlying curvature of
the surface.

The minimal set of folds that must be programmed “correctly” to ensure that the
entire fold pattern folds without error.

Numerically determined shape
combining curvature and folding.

By combining folds with shells, entirely new structures are
possible.

Taking advantage of inhomogeneous swelling, polymer gels can be patterned to reversibly fold at
controllable angles.

How do you find optimal patterns for robust folding of polymer gels? (swelling patterns are not unique)

Optimize for finite experimental range of swelling available, pattern resolution, and robustness of folding.

related to 3-colorings of a graph

The 3D reconstruction of mean and Gaussian curvatures reveal where the sheet has stretched and where
it has folded in response to an external force.

Gel swelling pattern Almost a sphere

This swelling pattern empirically
folds better than an axisymmetric
pattern for the sphere.

“Defected” Miura map

Gaussian curvature
(stretching)

Mean curvature
(folding)

Elastic energy as a function of the shape of the first crease

Kim et al., Science (2012)

Kim et al., Soft Matter (2012)

Kim et al., Science (2012)

Dias et al., EPL (2012)

Gel lithography
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Three-step lithographic patterning of trilayer gels:

Self-folding polymer gels

Schematic side-view of a fold:



Self-folding polymer gels



Can make origami with simultaneous folds



Can make origami with simultaneous folds

Randlett, “New Flapping Bird”



Can make origami with simultaneous folds

Randlett, “New Flapping Bird”



Focused on mountain 

Focused on valley  

Before release  

Miura-Ori pattern 



Swelling and Deswelling 
(Na, Evans, Bae, Chiappelli, Santangelo, Lang, Hull, Hayward, 2014)



Swelling and Deswelling 
(Na, Evans, Bae, Chiappelli, Santangelo, Lang, Hull, Hayward, 2014)



Swelling and Deswelling 
(Na, Evans, Bae, Chiappelli, Santangelo, Lang, Hull, Hayward, 2014)



A more complicated fold

• Origami octahedron-tetrahedron truss (invented by numerous origamists:  David 
Huffman, Ron Resch, Toshikazu Kawasaki, and others)

Mountain crease

Valley crease

A

B

C

C
B

A

Junhee Na, Ryan Hayward, 
Thomas Hull, Chris Santangelo



Octet Truss
3D octahedron-tetrahedron truss structure -Ronald D. Resch 
(Tomas Hull proposed)

2.2 mm

J.-H. Na

valley mountain

500 µ m

3D octahedron-tetrahedron truss structure -Ronald D. Resch 
(Tomas Hull proposed)

2.2 mm

J.-H. Na

valley mountain

500 µ m

First attempts did not fold very well.

Junhee Na, Ryan Hayward, 
Thomas Hull, Chris Santangelo



Octet Truss
With more accurate folding angles, it worked much better.

Junhee Na, Ryan Hayward, 
Thomas Hull, Chris Santangelo



Octet Truss Junhee Na, Ryan Hayward, 
Thomas Hull, Chris Santangelo



Octet Truss



Octet Truss 
(confocal fluorescence microscopy image by Junhee Na)

Junhee Na, Ryan Hayward, 
Thomas Hull, Chris Santangelo



The classic way to fold a Miura-ori

How do we make such animations?



Configuration space of a flat-foldable, deg 4 vertex
Configuration space: n-dimensional parameter space containing points 
                                    where the        are all the folding angles will contain the 
configuration space containing all such points that satisfy the rigid folding 
constraints:   Around every vertex we must have 
 
 
where                   is the matrix that rotates 3D space about line       by       .
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Configuration space: n-dimensional parameter space containing points 
                                    where the        are all the folding angles will contain the 
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constraints:   Around every vertex we must have 
 
 
where                   is the matrix that rotates 3D space about line       by       . 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Configuration space of a flat-foldable, deg 4 vertex
Demo:



Configuration space of a flat-foldable, deg 4 vertex
What does the configuration space look like? 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: (1) The flat state                 is a singularity (or a branch point) of the 
configuration space manifold.  This means that folding from the flat state is 
harder than unfolding to the flat state.  :-) 
          (2)  The config space is symmetric about the origin (reversing MVs). 
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What is self-folding?
To self-fold, each crease needs an actuator of some kind.


Each actuator applies torque. 
We call the collection of these torques 
at all the creases the driving force of the 
folding, which we can think of as a 
vector field on the configuration space.


In a separable driving force, each actuator only 
knows its own folding angle.  I.e., 


A conservative driving force is the gradient of a potential function:


For example, if we’re lucky we could try the driving force:

 

 

~f = �rU(~⇢)



What is self-folding?
A nice continuous rigid folding           from a rigid folding           to            is an 
arc-length parameterized piecewise         curve in a configuration space.  At 
each point there will be at most two tangent vectors: 
 
 
 
The set of all such tangent vectors for all nice continuous rigid foldings passing 
through a configuration point projected onto the unit sphere is called the set of 
valid tangents. 
 

We define the constrained forces along a nice continuous rigid folding          to 
be                                                    (the forward force) and                            
 
                                                        (the backward force).

⇢1

⇢2
~⇢(0)

~⇢(1)

~v+(s)
~f(~⇢(s))



What is self-folding?
A nice continuous folding           from a rigid folding             to           is  
self-foldable by driving force             if for all                      the forward force 
at             on the configuration space is positive and takes on a local maximum 
among the valid tangents at    .


That is, you want the dot product of             and 
to be positive.  It makes sense!


We say that a nice continuous folding          is uniquely self-foldable if            is 
the only nice continuous folding that is self-foldable by     . 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⇢2
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~f(~⇢(s))



What is self-folding?
Theorem: For every rigidly, flat-foldable degree-4 vertex with arbitrary target 
and starting configurations, there exists a driving force that makes the vertex 
uniquely self-foldable.


Proof:  Assume that the target        is on mode 1. 
We want to find a potential function 
such that 
(1)            monotonically decreases along mode 1 
toward the target state and 
(2)            monotonically decreases along mode 2 
toward the flat state. 
 

⇢1

⇢2
~⇢(0)

~⇢(1)



Back to the degree 4 case
Theorem: For every rigidly, flat-foldable degree-4 vertex with arbitrary target 
and starting configurations, there exists a driving force that makes the vertex 
uniquely self-foldable.


Proof:  Assume that the target        is on mode 1. 
We want to find a potential function 
such that 
(1)            monotonically decreases along mode 1 
toward the target state and 
(2)            monotonically decreases along mode 2 
toward the flat state. 
 
The following works: 
 
 
 
where       are the coordinates of the target configuration.
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Degree 6, symmetric vertex
Consider a symmetric, degree-6 vertex.  We want to 
self-fold it to a target state (1, -3.7, 1, -3.7, 1, -3.7).


The “obvious” driving force would be to push the 
creases to be (V, M, V, M, V, M), right?  

 

 

 

 

 



Degree 6, symmetric vertex
Consider a symmetric, degree-6 vertex.  We want to 
self-fold it to a target state (1, -3.7, 1, -3.7, 1, -3.7).


The “obvious” driving force would be to push the 
creases to be (V, M, V, M, V, M), right?


Wrong!  The desired state is a pop-up vertex. 
But we can have a (V, M, V, M, V, M) state and  
get a pop-down vertex!  

 
 

 

 

 

 

Bifurcation!



Degree 6, symmetric vertex
How do we “push” the creases to fold through singularities (like the flat, 
unfolded state) to the configuration we want?

pop down

ρ1

ρ1

ρ2

ρ2

ρ2

ρ2

ρ1

ρ1
mode 2:

mode 1:

pop up

pop up

pop down



Degree 6, symmetric vertex
How do we “push” the creases to fold through singularities (like the flat, 
unfolded state) to the configuration we want?


Here’s the idea:  Choose a driving force       that  
(a) pushes the state along the desired path (making                        ), and 
(b) is orthogonal to other, undesired manifolds at all singular points.

⇢1

⇢2

desired
 folding path

undesired
 folding path

~d

~d

~d



Degree 6, symmetric vertex
After some work, we can calculate the configuration space for the 
symmetrically-folding degree-6 vertex.


To self-fold along mode 1, for example,  
we need a driving force 
 
 
in order to be orthogonal to mode 2 at the  
flat state.       ( :o :o :o  !!!!! )
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Degree 6, symmetric vertex
After some work, we can calculate the configuration space for the 
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Thus we want to drive all 
creases to be valleys!!!



Degree 6, symmetric vertex
Amazingly, this actually works in experiments!  Tomohiro made a physical 
model with loaded springs to model the two different valley torque strengths.



In conclusion

• We can also prove some multiple-vertex crease patterns can self-fold, while 
others cannot!  


• See our paper:  Self-foldability in rigid origami, Journal of Mechanisms and 
Robotics, Vol. 9, No. 2, 2017, 021008-021008-9, doi:10.1115/1.4035558 


• Contact:   Thomas Hull                     Tomohiro Tachi 
                 thull@wne.edu                  tachi@idea.c.u-tokyo.ac.jp 

http://mechanismsrobotics.asmedigitalcollection.asme.org/article.aspx?articleid=2595424
mailto:thull@wne.edu
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