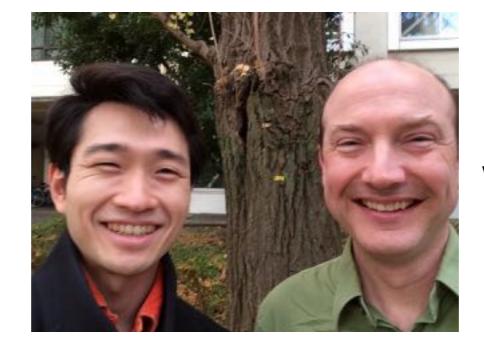
Tomohiro Tachi The University of Tokyo



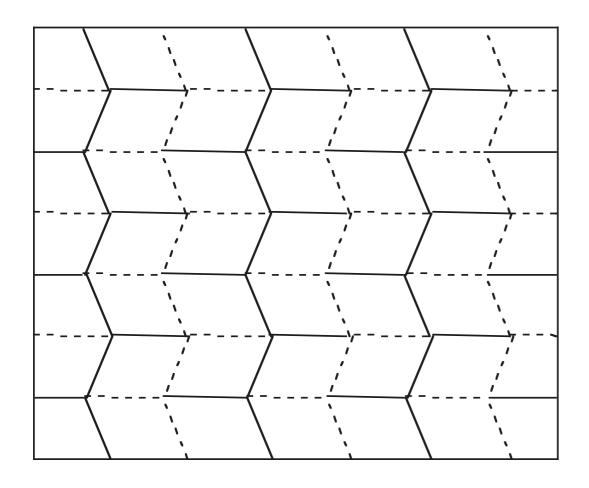
Thomas C. Hull Western New England University

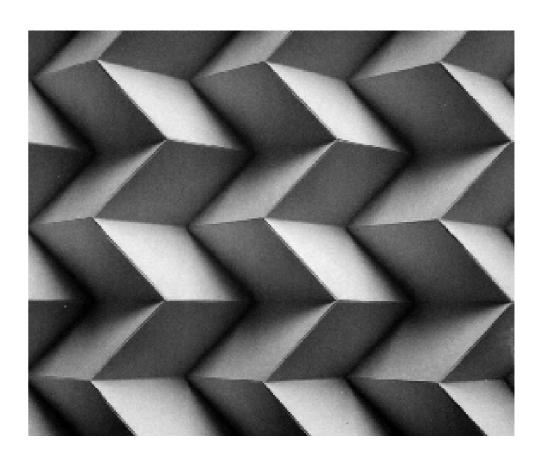
Self-foldabiliy and Rigid Origami

Thomas Hull, Associate Professor of Mathematics Western New England University thull@wne.edu

What is origami good for?

 The Miura map fold, invented by Japanese astrophysicist Koryo Miura in the 1970s, has been used for maps, solar panels in space satellites, and in nature.





 Devising ways to make materials fold automatically in response to some stimulus.

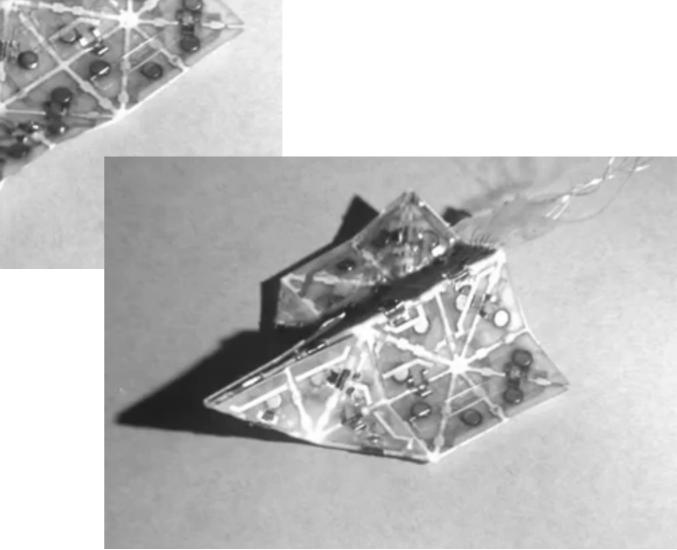
Example:

 Harvard
 Microrobotics Lab
 (Hawkes, An, Benbernou,
 Tanaka, Kim, Demaine,
 Rus, Wood 2009)

Devising ways to make materials fold automatically in response to some

stimulus.

Example: Harvard Microrobotics Lab



Robert Wood's robotics lab at Harvard (2014)

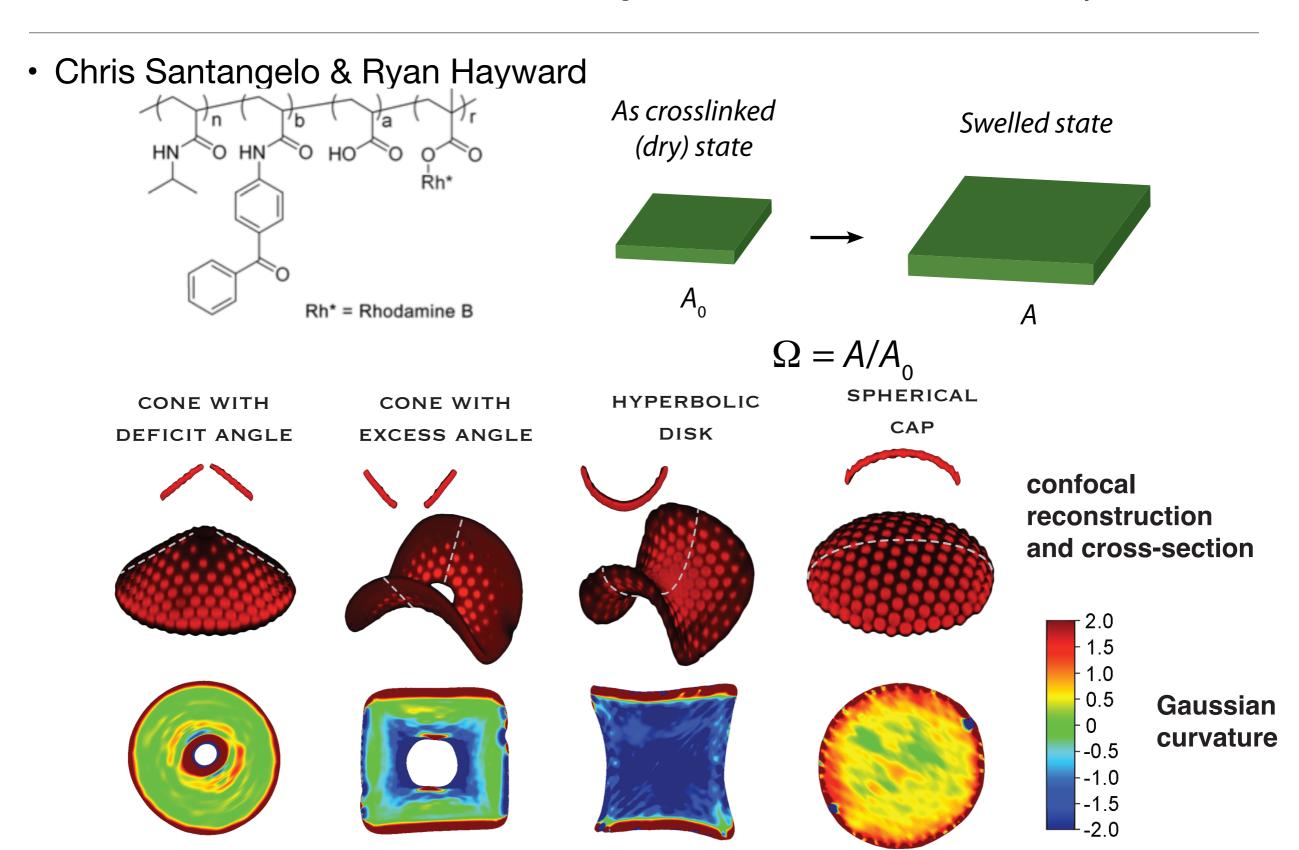
Self-Folding Crawler Harvard Microrobotics Lab

Larry Howell's group (BYU, 2014)

Larry Howell's group (BYU, 2014)

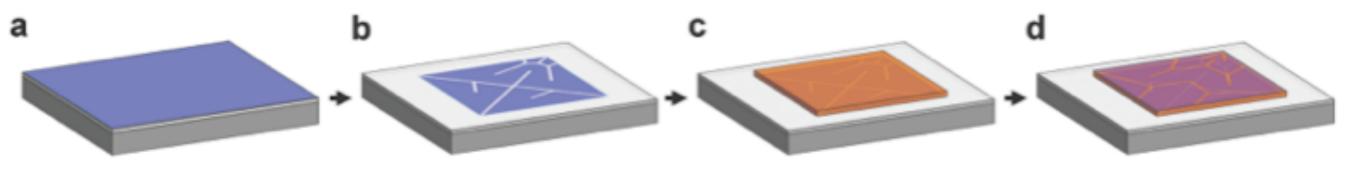


UMass Soft Matter & Polymer Science Group

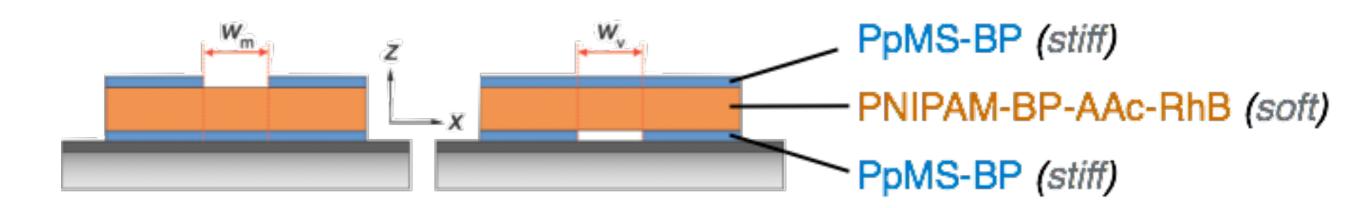


Self-folding polymer gels

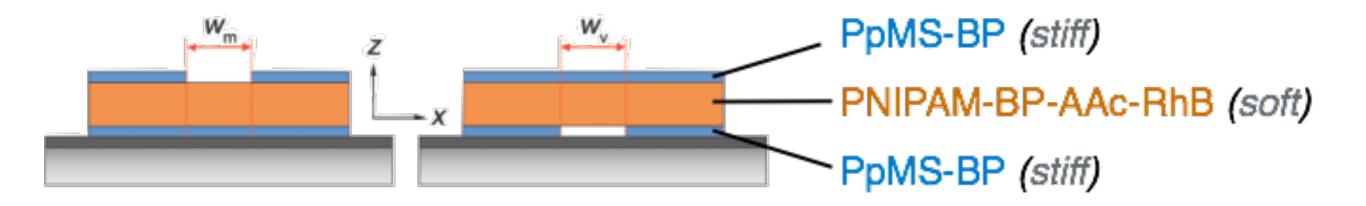
Three-step lithographic patterning of trilayer gels:

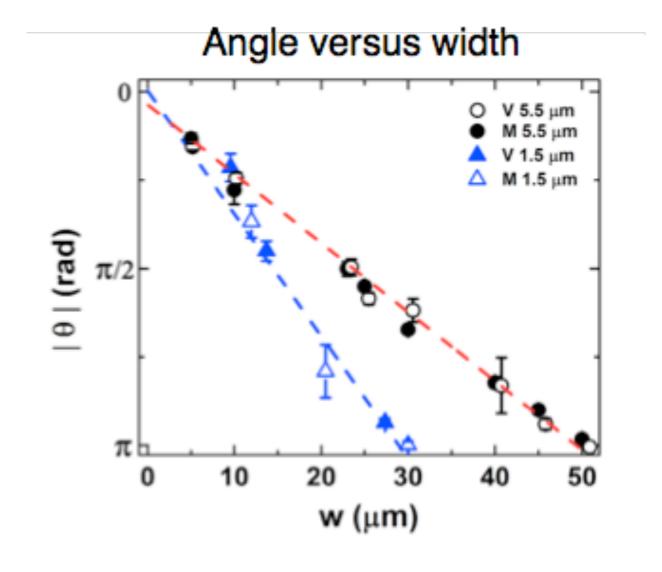


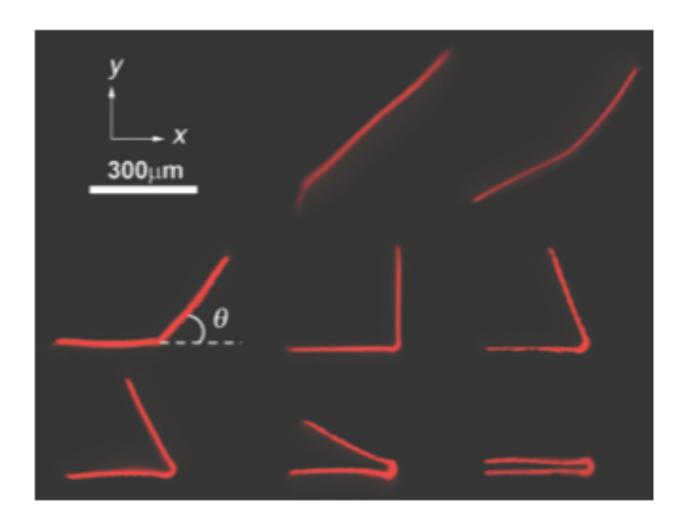
Schematic side-view of a fold:



Self-folding polymer gels





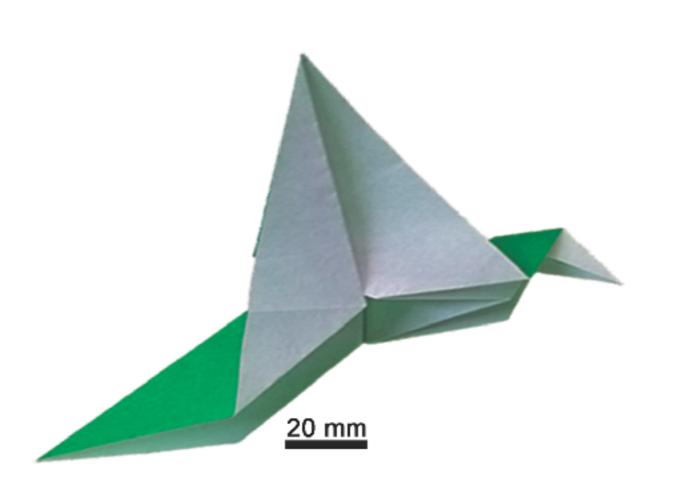


Can make origami with simultaneous folds

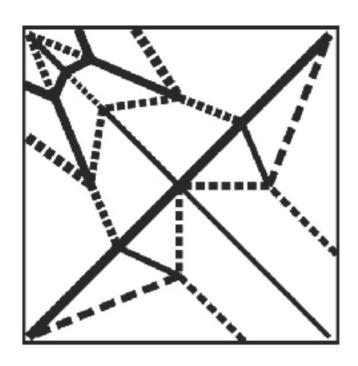


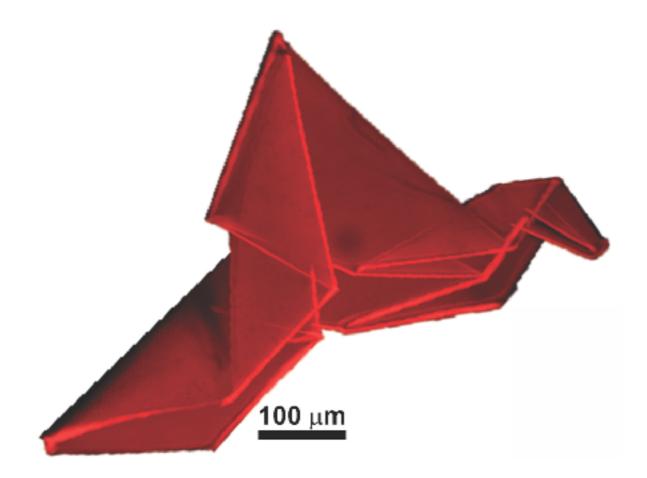
flapping Randlett bird

Can make origami with simultaneous folds

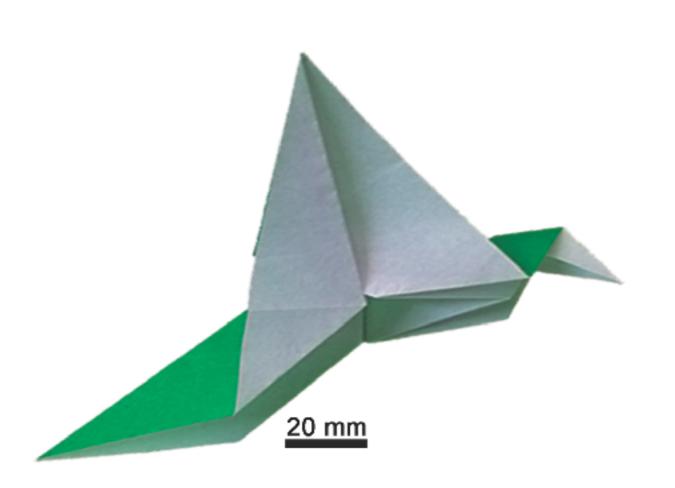


Randlett, "New Flapping Bird"

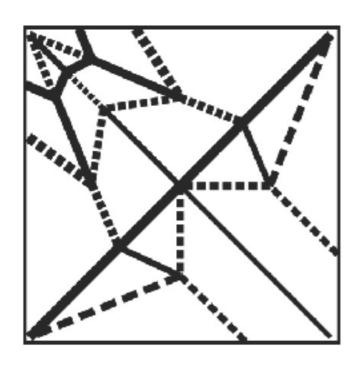


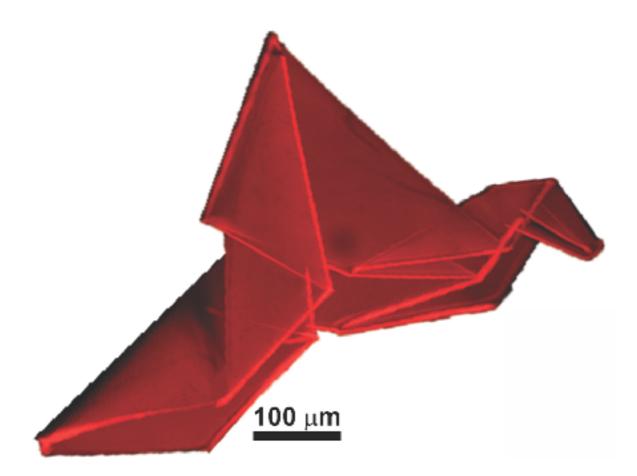


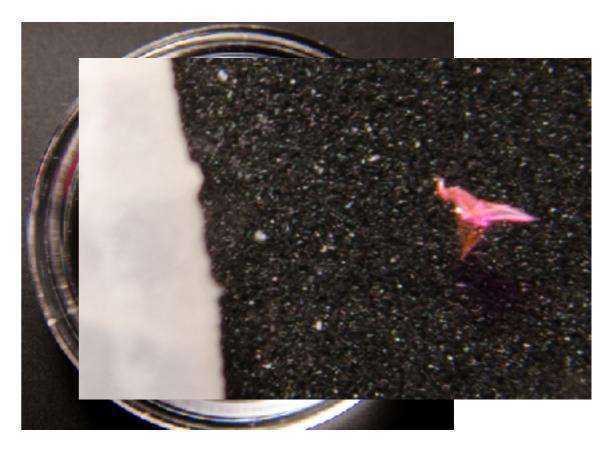
Can make origami with simultaneous folds



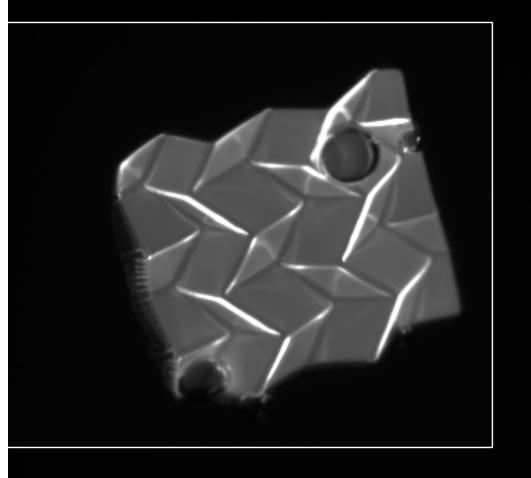
Randlett, "New Flapping Bird"

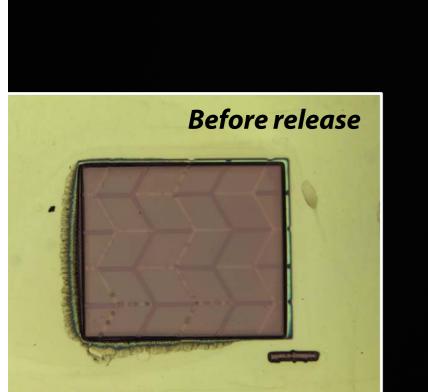


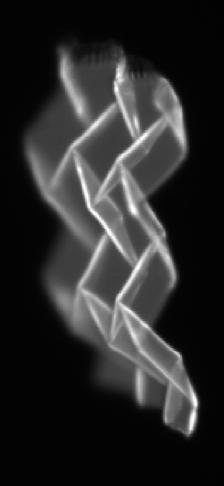


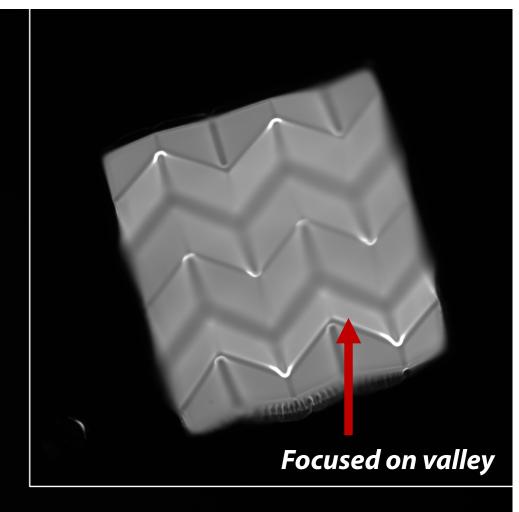


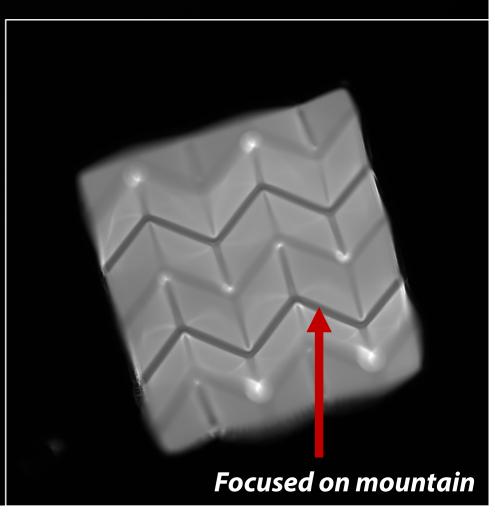
Miura-Ori pattern





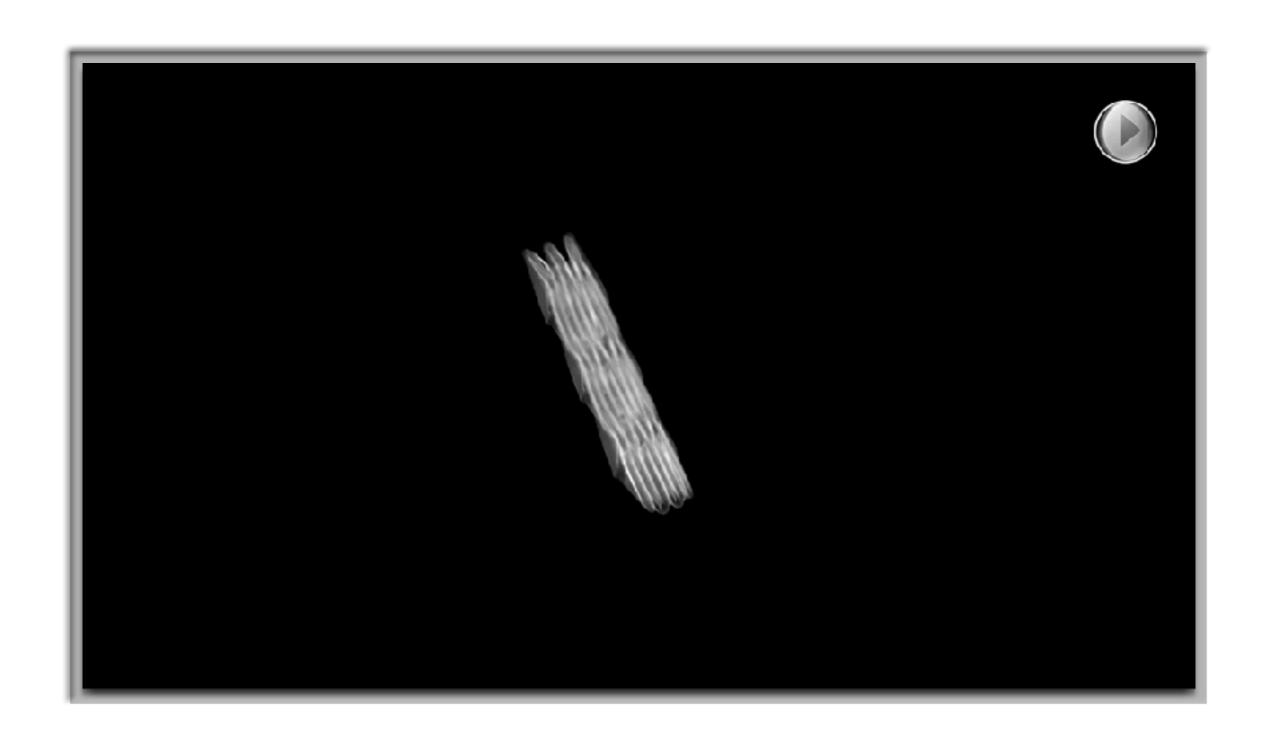






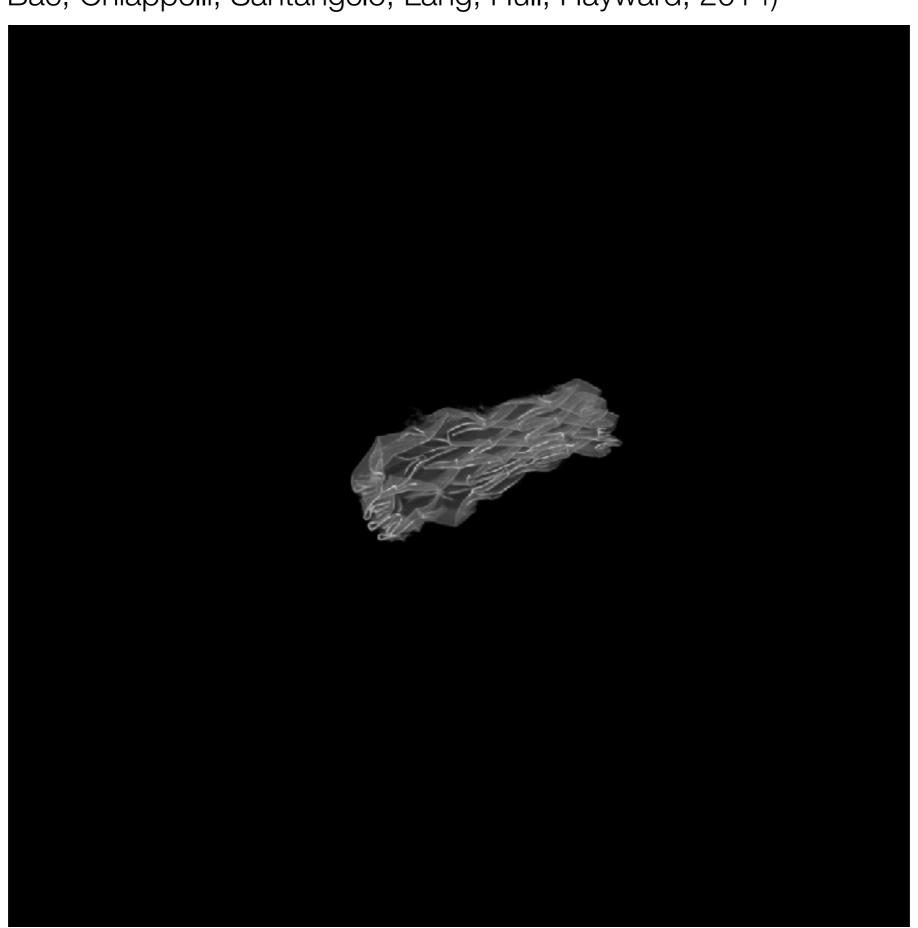
Swelling and Deswelling

(Na, Evans, Bae, Chiappelli, Santangelo, Lang, Hull, Hayward, 2014)



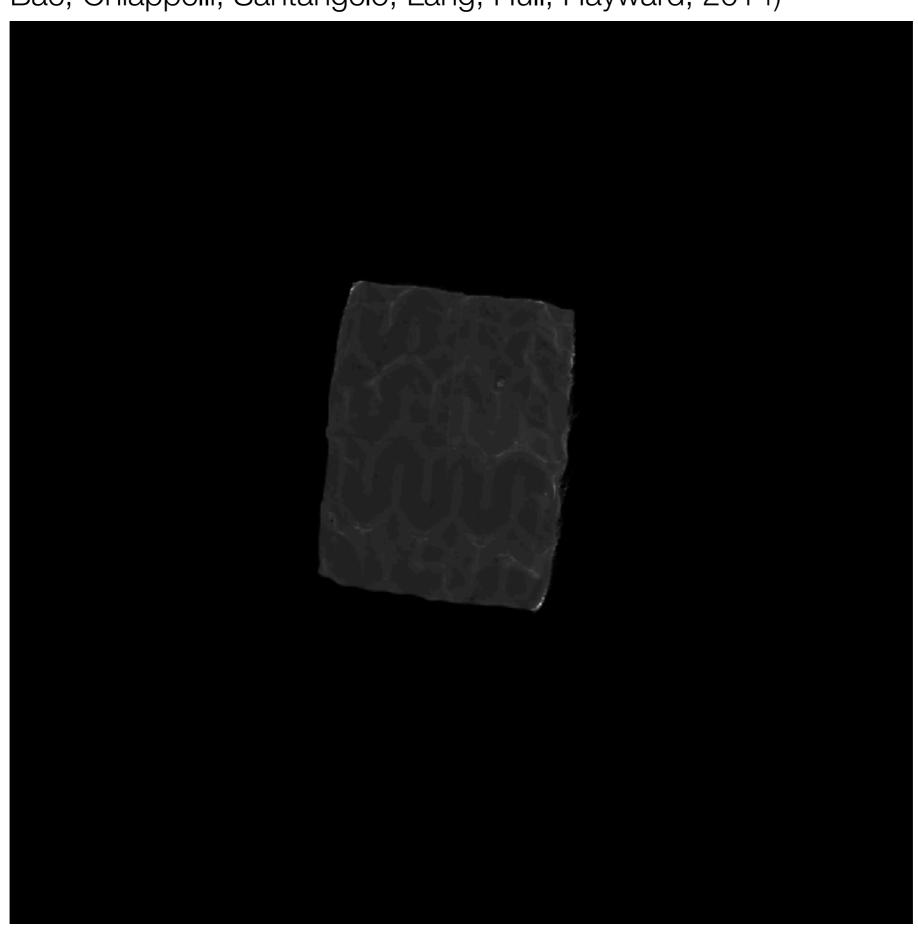
Swelling and Deswelling

(Na, Evans, Bae, Chiappelli, Santangelo, Lang, Hull, Hayward, 2014)



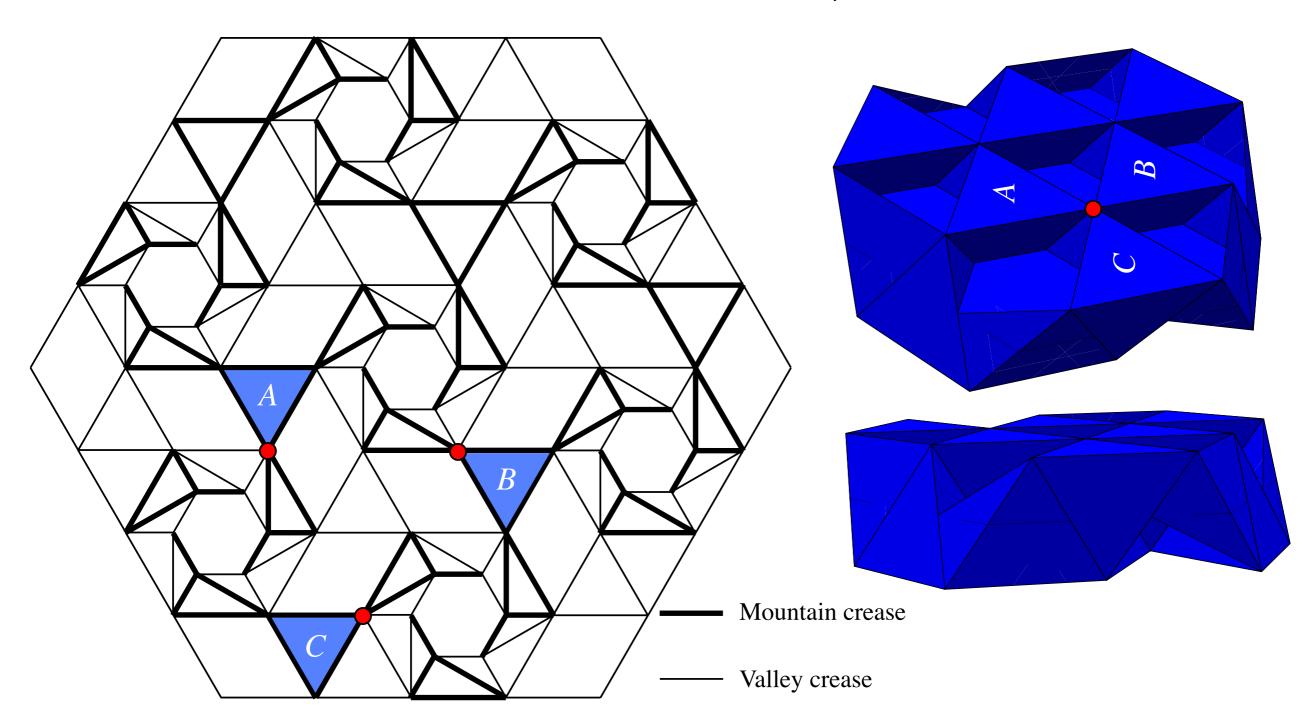
Swelling and Deswelling

(Na, Evans, Bae, Chiappelli, Santangelo, Lang, Hull, Hayward, 2014)

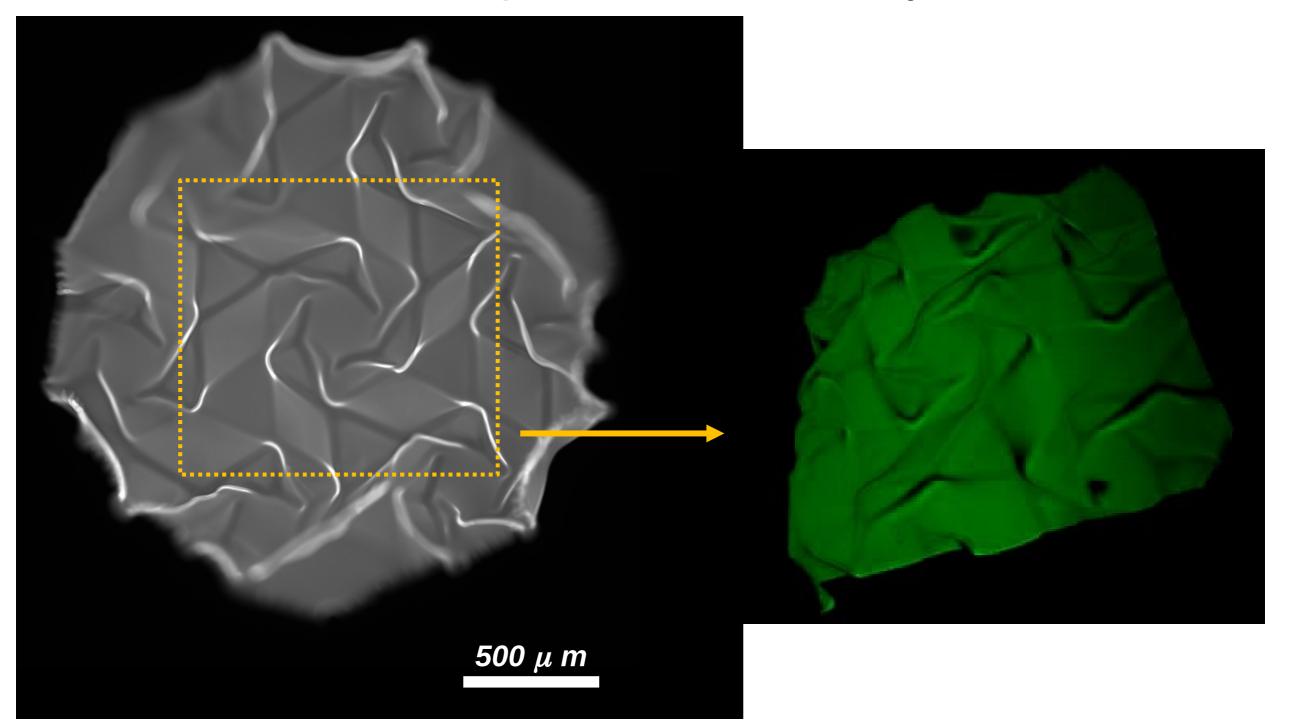


A more complicated fold

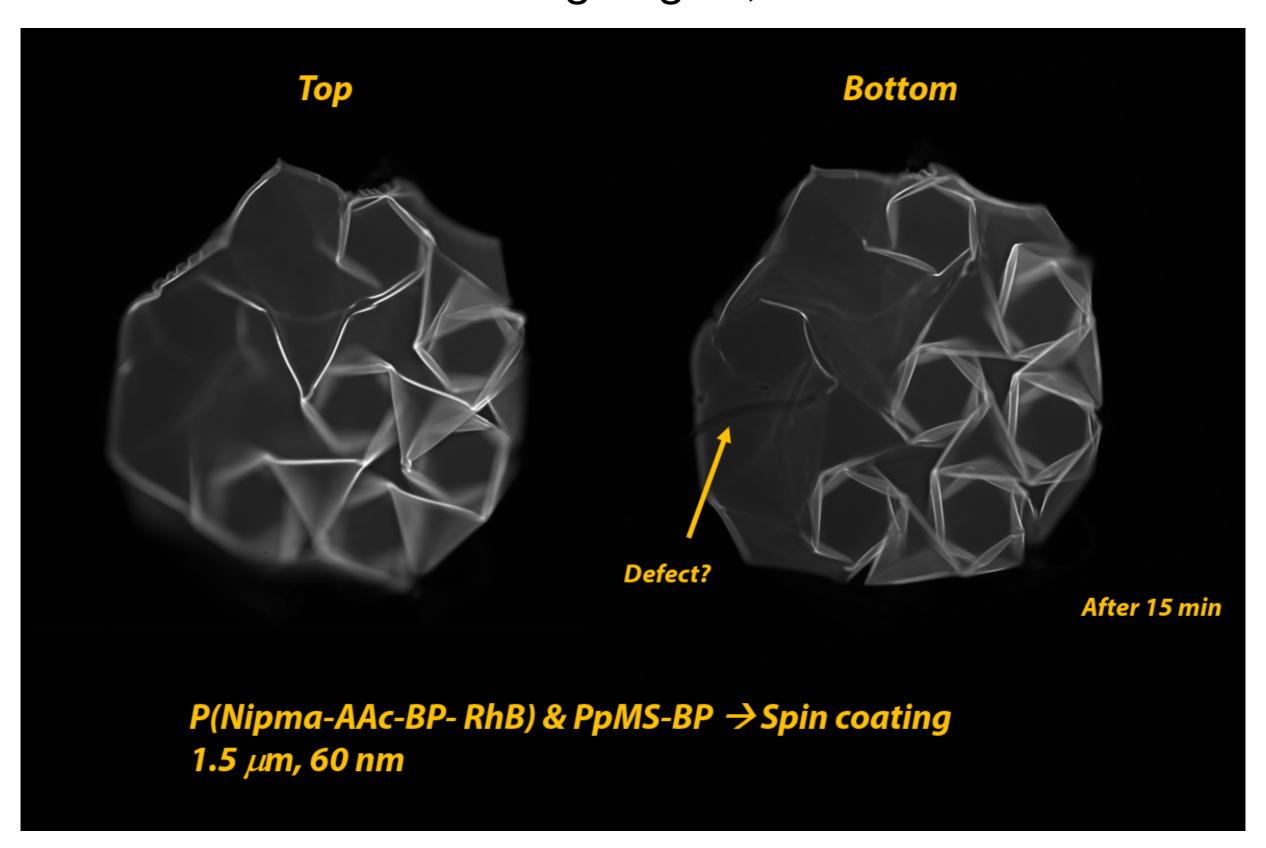
 Origami octahedron-tetrahedron truss (invented by numerous origamists: David Huffman, Ron Resch, Toshikazu Kawasaki, and others)

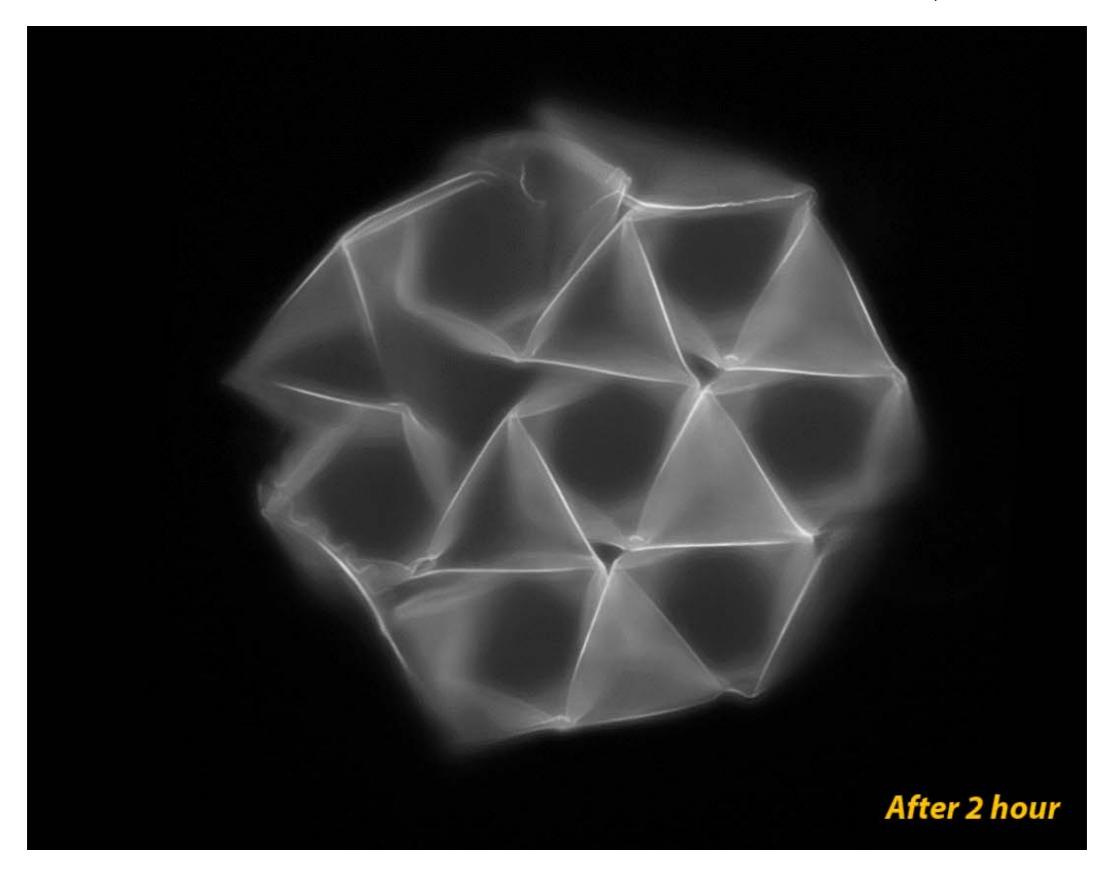


First attempts did not fold very well.

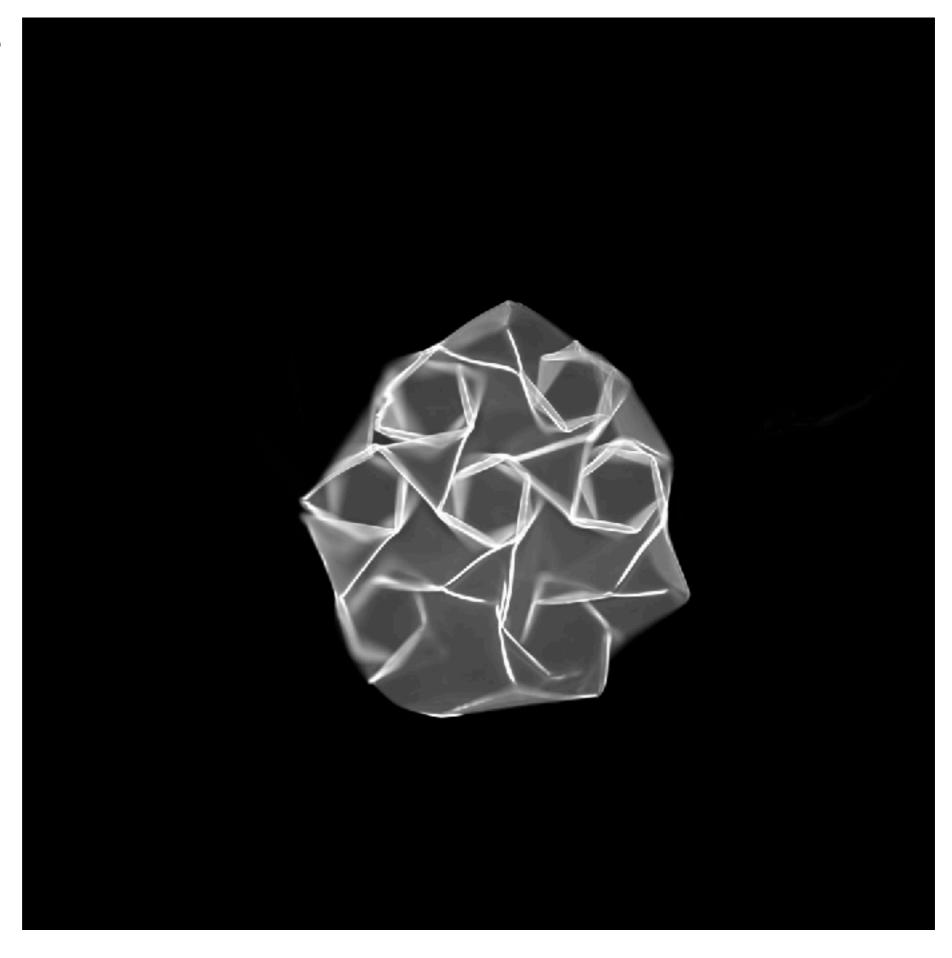


With more accurate folding angles, it worked much better.

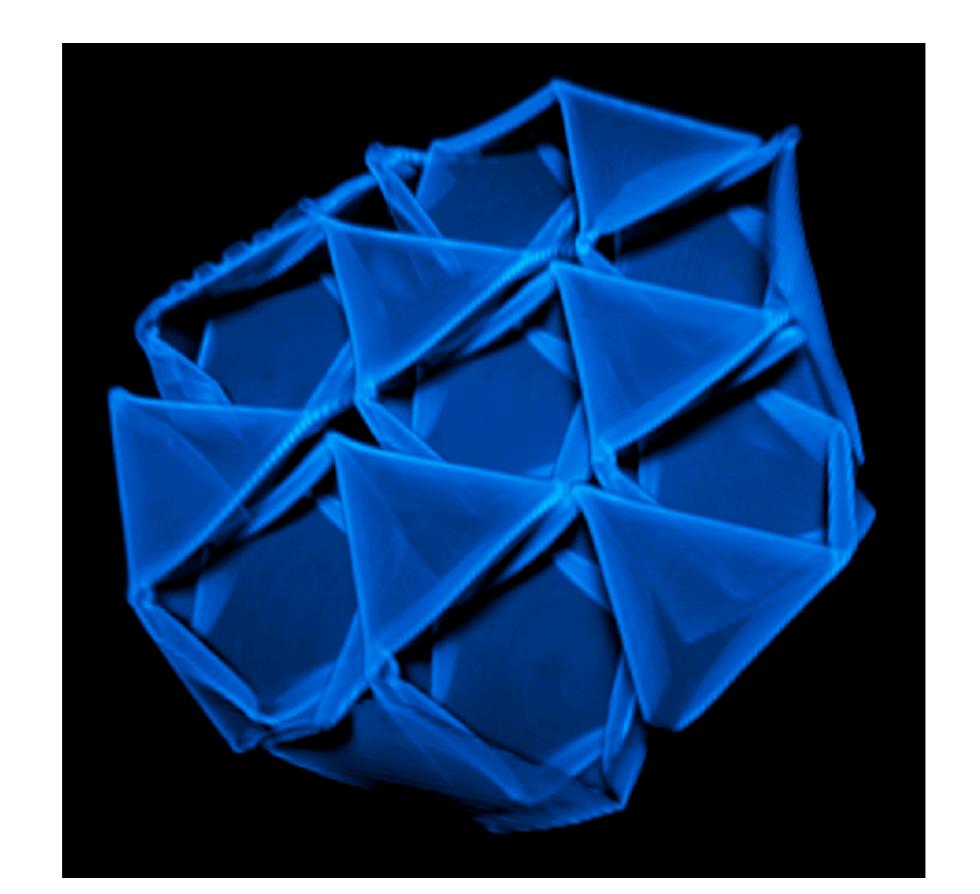




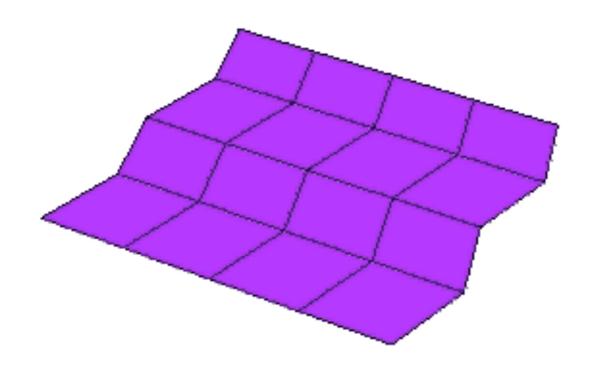
Octet Truss



Octet Truss
Thomas Hull, Chris Santangelo
(confocal fluorescence microscopy image by Junhee Na)



The classic way to fold a Miura-ori



How do we make such animations?

Configuration space: n-dimensional parameter space containing points $\vec{\rho} = \langle \rho_1, \dots, \rho_n \rangle$ where the ρ_i are all the folding angles will contain the **configuration space** containing all such points that satisfy the rigid folding constraints: Around every vertex we must have

$$R(l_1, \rho_1)R(l_2, \rho_2)\cdots R(l_{2n}, \rho_{2n}) = I$$

where $R(l_i,
ho_i)$ is the matrix that rotates 3D space about line $\,l_i\,$ by $\,
ho_i$.

Configuration space: n-dimensional parameter space containing points $ec{
ho}=\langle
ho_1,\ldots,
ho_n
angle$ where the ho_i are all the folding angles will contain the configuration space containing all such points that satisfy the rigid folding constraints: Around every vertex we must have

$$R(l_1, \rho_1)R(l_2, \rho_2)\cdots R(l_{2n}, \rho_{2n}) = I$$

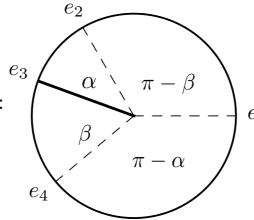
where $R(l_i,
ho_i)$ is the matrix that rotates 3D space about line $\,l_i\,$ by $\,
ho_i$.

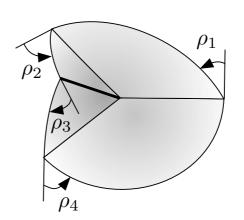
Apply to this vertex:

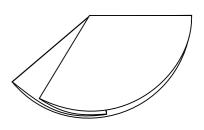
$$\Rightarrow \rho_1 = -\rho_3, \rho_2 = \rho_4$$

$$\tan \frac{\rho_2}{2} = \frac{\cos(\frac{\alpha - \beta}{2})}{\cos(\frac{\alpha + \beta}{2})} \tan \frac{\rho_1}{2}$$

$$= \frac{\log(\frac{\alpha - \beta}{2})}{\log(\frac{\alpha + \beta}{2})} \tan \frac{\rho_1}{2}$$



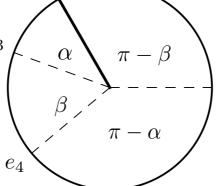


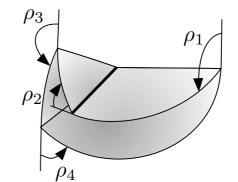


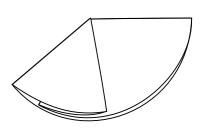
OR

$$\rho_1 = \rho_3, \rho_2 = -\rho_4$$

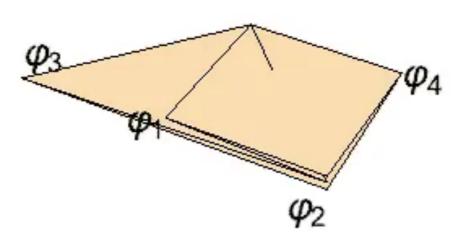
 $\rho_1 = \rho_3, \rho_2 = -\rho_4 \qquad e_3 \qquad \pi - \beta \qquad e_1 \qquad e_1 \qquad e_4 \qquad e_4 \qquad \pi - \alpha \qquad e_1 \qquad e_4 \qquad$





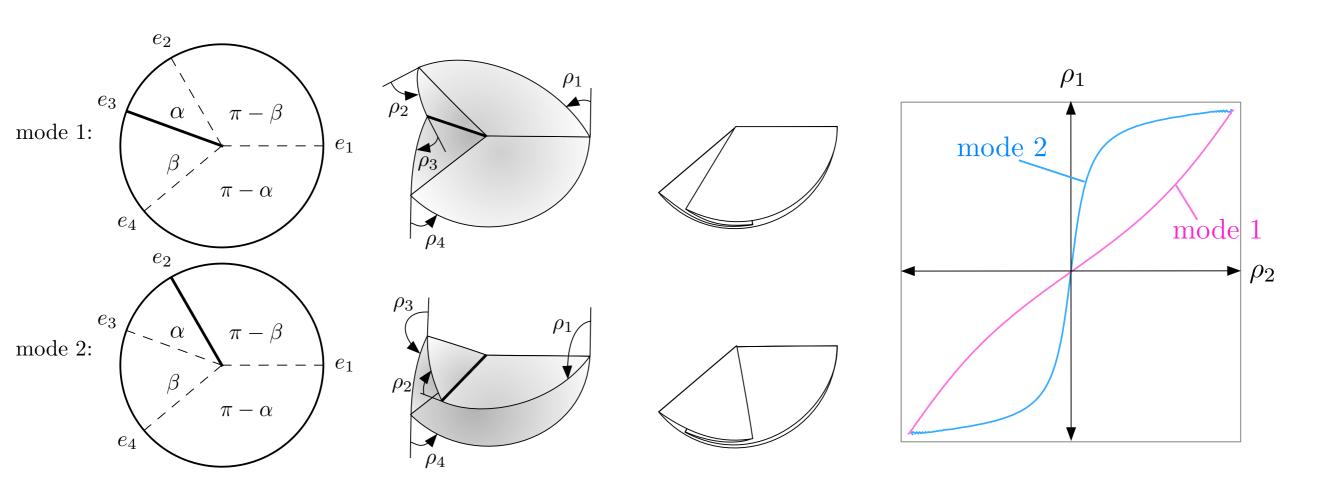


Demo:



$$\varphi_1 = -177.617$$
 $\varphi_2 = 174.251$
 $\varphi_3 = -177.617$
 $\varphi_4 = -174.251$

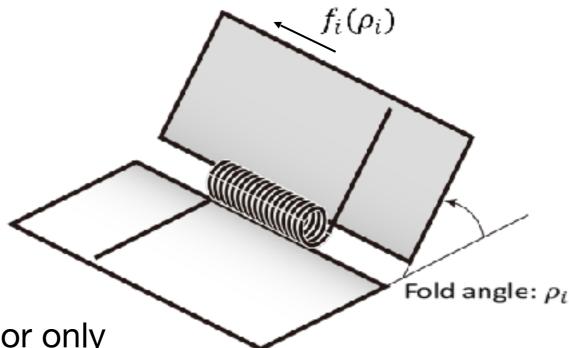
What does the configuration space look like?



- Note: (1) The flat state $\vec{\rho}=\vec{0}$ is a **singularity** (or a branch point) of the configuration space manifold. This means that folding from the flat state is harder than unfolding to the flat state. :-)
 - (2) The config space is symmetric about the origin (reversing MVs).

To self-fold, each crease needs an actuator of some kind.

Each actuator applies torque. We call the collection of these torques at all the creases the **driving force** of the folding, which we can think of as a vector field on the configuration space.



In a separable driving force, each actuator only knows its own folding angle. I.e., $\vec{f} = (f_1(\rho_1), f_2(\rho_2), \dots, f_n(\rho_n))$

A conservative driving force is the gradient of a potential function:

$$\vec{f} = -\nabla U(\vec{\rho})$$

For example, if we're lucky we could try the driving force:

$$f_i(\rho_i) = k_i(\rho_{\text{target}} - \rho_i)$$

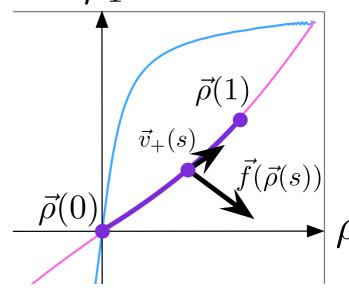
A **nice continuous rigid folding** $\vec{\rho}(s)$ from a rigid folding $\vec{\rho}(0)$ to $\vec{\rho}(1)$ is an arc-length parameterized piecewise C^1 curve in a configuration space. At each point there will be at most two tangent vectors:

$$\vec{v}_{+}(s_0) = \lim_{s \to s_0 +} \frac{d\vec{p}(s)}{ds}$$
 $\vec{v}_{-}(s_0) = \lim_{s \to s_0 -} \frac{d\vec{p}(s)}{ds}$

The set of all such tangent vectors for all nice continuous rigid foldings passing through a configuration point projected onto the unit sphere is called the **set of valid tangents**.

We define the **constrained forces** along a nice continuous rigid folding $\vec{\rho}(s)$ to be $f_+(s)=\vec{v}_+(s)\cdot\vec{f}(\vec{\rho}(s))$ (the forward force) and $\underline{\rho_1}$

$$f_{-}(s) = \vec{v}_{-}(s) \cdot \vec{f}(\vec{\rho}(s))$$
 (the backward force).



A nice continuous folding $\vec{\rho}(s)$ from a rigid folding $\vec{\rho}(0)$ to $\vec{\rho}(q)$ is **self-foldable** by driving force $f(\vec{\rho})$ if for all $s \in [0,q)$ the forward force $f_+(s)$ at $\vec{\rho}(s)$ on the configuration space is positive and takes on a local maximum among the valid tangents at s.

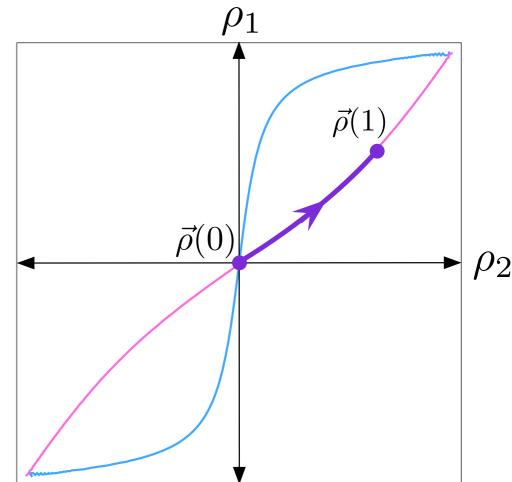
That is, you want the dot product of $\vec{v}_+(s)$ and $\vec{f}(\vec{\rho}(s))$ to be positive. It makes sense! $\vec{\rho}(0)$

We say that a nice continuous folding $\vec{\rho}(s)$ is **uniquely self-foldable** if $\vec{\rho}(s)$ is the only nice continuous folding that is self-foldable by \vec{f} .

Theorem: For every rigidly, flat-foldable degree-4 vertex with arbitrary target and starting configurations, there exists a driving force that makes the vertex uniquely self-foldable.

Proof: Assume that the target $\vec{\rho}_T$ is on mode 1. We want to find a potential function $U(\vec{\rho})$ such that

- (1) $U(\vec{\rho})$ monotonically decreases along mode 1 toward the target state and
- (2) $U(\vec{\rho})$ monotonically decreases along mode 2 toward the flat state.



Back to the degree 4 case

Theorem: For every rigidly, flat-foldable degree-4 vertex with arbitrary target and starting configurations, there exists a driving force that makes the vertex uniquely self-foldable.

Proof: Assume that the target $\vec{\rho}_T$ is on mode 1. We want to find a potential function $U(\vec{\rho})$ such that

- (1) $U(\vec{\rho})$ monotonically decreases along mode 1 toward the target state and
- (2) $U(\vec{\rho})$ monotonically decreases along mode 2 toward the flat state.

The following works:

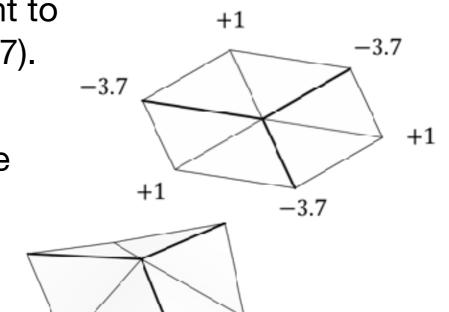
$$U(\vec{\rho}) = \frac{1}{2} ||\vec{\rho} - \vec{\rho}_T||^2 = \sum_{i=1}^4 \frac{1}{2} (\rho_i - \tau_i)^2$$

 $\vec{\rho}(0)$

where T_i are the coordinates of the target configuration.

Consider a symmetric, degree-6 vertex. We want to self-fold it to a target state (1, -3.7, 1, -3.7, 1, -3.7).

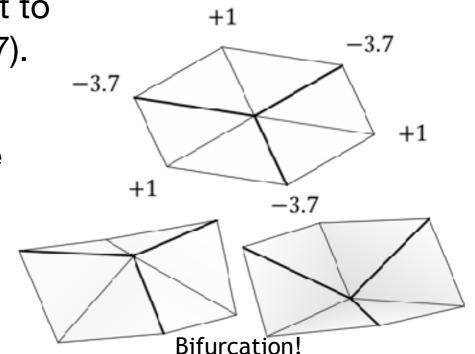
The "obvious" driving force would be to push the creases to be (V, M, V, M, V, M), right?



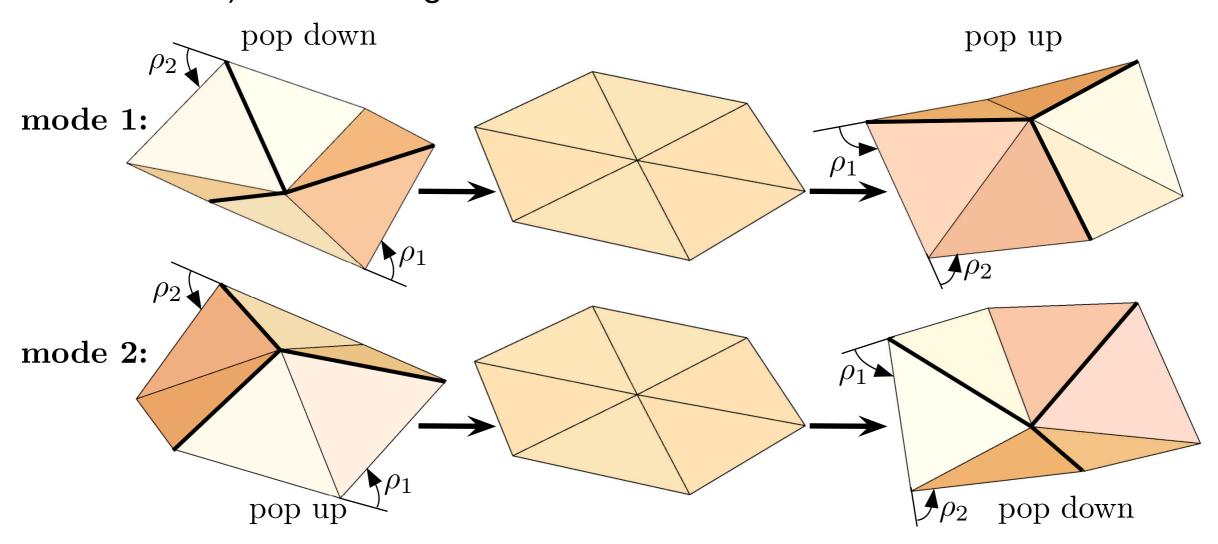
Consider a symmetric, degree-6 vertex. We want to self-fold it to a target state (1, -3.7, 1, -3.7, 1, -3.7).

The "obvious" driving force would be to push the creases to be (V, M, V, M, V, M), right?

Wrong! The desired state is a pop-up vertex. But we can have a (V, M, V, M, V, M) state and get a pop-down vertex!



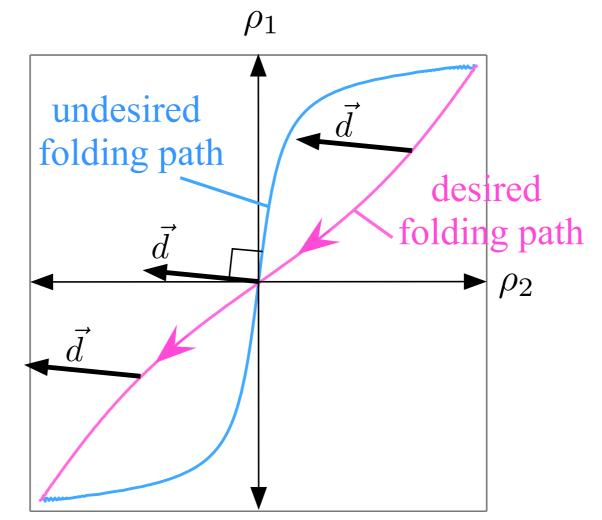
How do we "push" the creases to fold through singularities (like the flat, unfolded state) to the configuration we want?



How do we "push" the creases to fold through singularities (like the flat, unfolded state) to the configuration we want?

Here's the idea: Choose a driving force \vec{f} that

- (a) pushes the state along the desired path (making $f_{+}(s)>0$), and
- (b) is orthogonal to other, undesired manifolds at all singular points.

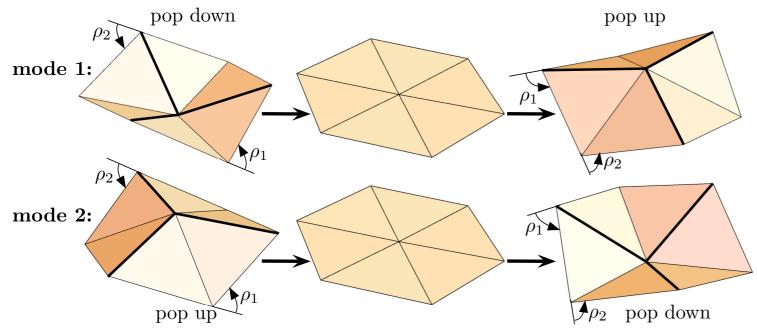


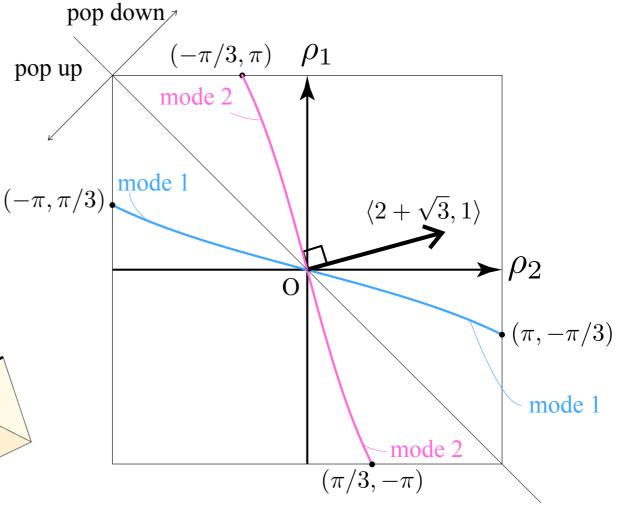
After some work, we can calculate the configuration space for the symmetrically-folding degree-6 vertex.

To self-fold along mode 1, for example, we need a driving force

$$\vec{f} = \langle 2 + \sqrt{3}, 1 \rangle$$

in order to be orthogonal to mode 2 at the flat state. (:o:o:o:!!!!!)



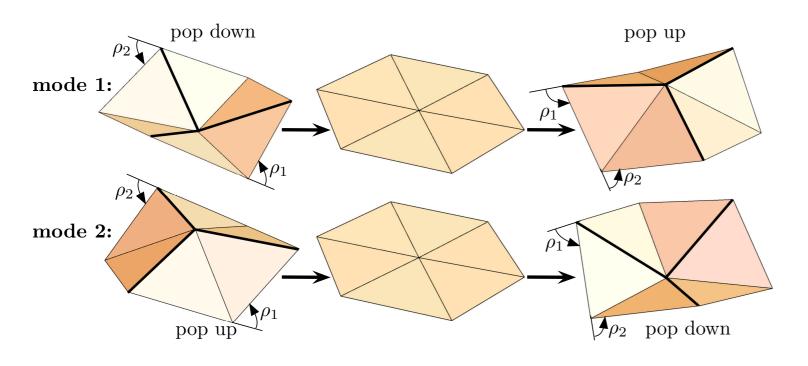


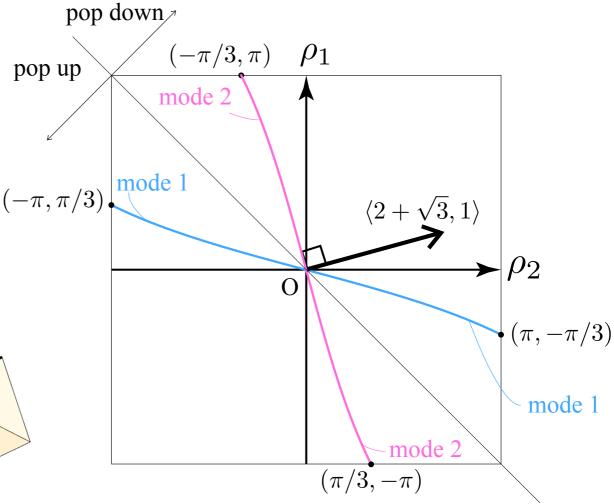
After some work, we can calculate the configuration space for the symmetrically-folding degree-6 vertex.

To self-fold along mode 1, for example, we need a driving force

$$\vec{f} = \langle 2 + \sqrt{3}, 1 \rangle$$

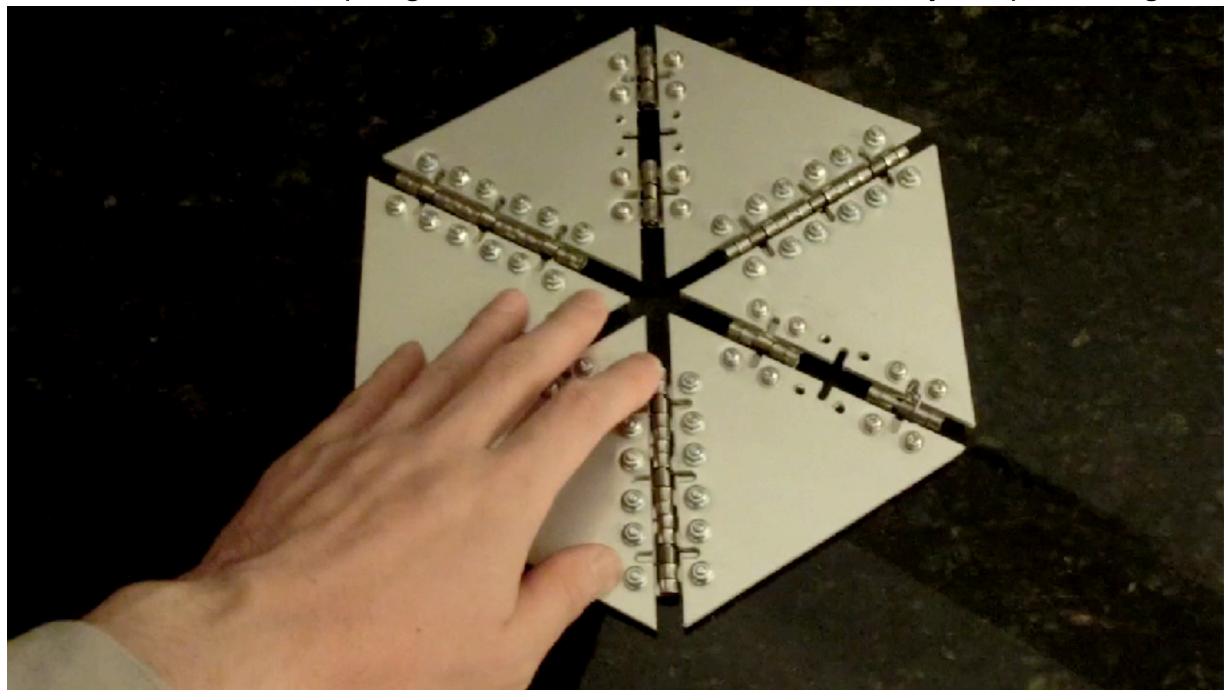
in order to be orthogonal to mode 2 at the flat state. (:o:o:o:!!!!!)





Thus we want to drive all creases to be **valleys**!!!

Amazingly, this actually works in experiments! Tomohiro made a physical model with loaded springs to model the two different valley torque strengths.



In conclusion

 We can also prove some multiple-vertex crease patterns can self-fold, while others cannot!

• See our paper: Self-foldability in rigid origami, *Journal of Mechanisms and Robotics*, Vol. 9, No. 2, 2017, 021008-021008-9, doi:10.1115/1.4035558

 Contact: Thomas Hull <u>thull@wne.edu</u> Tomohiro Tachi tachi@idea.c.u-tokyo.ac.jp

