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Fig 2.2.2 ‘The Bauhaus model’,1927 and 1937, a later version by Irene Schawinsky

‘The Bauhaus model’
Several centuries later Josef Albers taught at the first Bauhaus in 1927 and 1928 and ex-

plored curved crease paperfolding in the context of architectural pedagogy. A student of his 

makes a model that is made by pleating concentric circles, the technique of folding paper in 

alternating directions of mountain and valley creases (Fig 2.2.2 left). The creases automati-

cally fold into the depicted configuration [Win 78]. Another example exist from 1937 at Black 

Mountain College (Fig 2.2.2 center) [Adl 04]. The model becomes a subject of investigation 

for folding experts and Irene Schawinsky, the wife of Alexander “Xanti” Schawinsky, made a 

variation of the model (Fig 2.2.2 right). She was a Bauhaus student and later taught at Black 

Mountain College during the time Albers worked there. Her version of the model features a 

large hole in the center [Pha 44].

 Thoki Yenn, Danish paper sculptor and founder of the short lived Dansk Origami 

Center, published his version of the model in the 1980s, which he called ‘Before the Big 

Bang’ [Yen 10]. Kunihiko Kasahara learned of the model from Yenn and made further varia-

tions, which he published in ‘Extreme Origami’ in 2003 [Kas 03]. The model finds interest for 

folding experts, who are mentioned in the final chapter of the dissertation. 

 Students made the model in Josef Albers’s ‘Vorkurs’, a foundations class in design. 

He decided to teach design via the use of paper models, because it was an abstract exer-

cise that allowed students to focus only on design and paper, not on pragmatic or functional 

requirements for instance.

 In a short article, republished by Londonberg in ‘Papier und Form’, Albers suggests 

to allow students to try out designs without any a priori knowledge of architecture or estab-

lished design methodologies. He calls this ‘non-expert experimentation’. The material itself 

is the only constraint for designing. This was very much aligned with the then newly estab-

lished Bauhaus curriculum that focused on material logics. Albers points out that working 

Fig 2.2.5 Cover and a design in ‘Papier und Form’ (1972, Kurt Londenberg)

paperfolding and was photographed with a large version of the model at the Hochschule 

für Gestaltung in Ulm (Fig 2.2.4 left). The image on the right depicts an enthusiastic student 

holding another large version in his hands from the same time period.

 Less known for his folding talent, but certainly recognized for his book art Kurt 

Londenberg (1914-1995) published ‘Papier und Form’ in 1972 followed by several editions 

later on (Fig 2.2.5 left). The book features sculptural works of paper and presents paperfold-

ing in various contexts. Among them is a model that appears in the ‘architectural folding’ 

chapter (Fig 2.2.5 right). Many of the photographed models were made specifically for the 

book and he saw this publication also an educational contribution [Lon 72]. Londenberg at-

tributed great significance to Bauhaus educator and artist, Josef Albers, and republished the 

above summarized article on working with paper.

 Hiroshi Ogawa [Oga 72] worked in a similar fashion as Londonberg as he also made 

the paper models for his publication (Fig 2.2.6). Ogawa focused on ‘paper sculpture’ and 

wanted to convey what could be achieved in terms of artistic expression. He appears to 

have had a more general audience in mind.

 Both authors’ works display artistic qualities in terms of the depicted objects them-

selves, the expressive nature of the photographs and also as art books. They both do not 

follow the fold-no-cut rule. They refrain from elaborating on personal artistic motivations, but 

want to demonstrate the design potential of the material. The 2 books served slightly differ-

ent purposes in different countries. Londonberg thought of his book as collection of works in 

paper in many different design disciplines and industries. He foregrounded connections to 

pedagogy, but also presented paper as industrial material and pointed to large scale implica-

tions. Londonberg used the term’ Papierarbeit’ meaning ‘work of or with paper’. Ogawa on 

Fig 2.2.6 Designs in ‘Forms of paper’ (1971, Hiroshi Ogawa)

the other hand was interested in conveying techniques and included crease patterns at the 

end of the book. Many of the works described in both books however are good examples of 

what I like to think of as paperfolding.

 David Huffman owned the 1971 edition of Hiroshi Ogawa’s ‘Forms of Paper’, but it 

is unclear when exactly he acquired the book. Huffman appeared to focus on tilings with 

straight creases in the 1960’s and it is hard to estimate when exactly he discovered curved 

creases for himself. The 3 examples in the figure are comparable to some of Huffman’s 

investigations (Fig 2.2.6).

David Huffman and Ronald Resch
The most expansive work from the 1970’s that utilized curved creases has to be attributed 

to the artist Ronald Resch and the computer scientist David Albert Huffman. Two examples 

of their work use a variety of curves (Fig 2.2.7). They discussed paperfolding in 1973, when 

Huffman visited Resch during a sabbatical leave at the University of Utah. By that time 

Resch had completed an impressive body of work that included curved crease paperfold-

ing. Huffman remained true to his roots and took a more analytical approach that included 

rulings in the years to come, while Resch was more interested in applied techniques for 

sculptures and architectural structures. Both published little and had a strong connection to 

computational processes, but only Resch used computers to realize some of his sculptural 

work [Res 74]. Resch and Huffman generally followed the ‘fold no cuts’ rule of folding pur-

ists. They both described their work as ‘folding’ or ‘foldings’ and did not use the term origami. 

Huffman’s cyclic tiling was made by hand with a sheet of vinyl similar to the ones Resch 
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Fig 2.2.8 Ron Resch operating a Gerber plotter (circa 1969), Gerber plotter model (circa 1970)

Fig 2.2.7 ‘Space Curve’ (Ron Resch), Vinyl model (David Huffman)

used at that time (Fig 2.2.7). Resch’s sculpture on the left was constructed as part of an 

academic paper that conjectured that any space curve can be a curved crease. I elucidate 

the work in the chapter on mathematical developments.

 Resch, being concerned with fabrication methods for his expressive art, created 

his own work flow and used a large plotter to pre-crease sheets of vinyl [Sch 09]. We can 

see Resch operating a plotter manufactured by Gerber that the University of Utah owned 

(Fig 2.2.8 left). The image on the right depicts a slightly better image of a similar computer 

controlled plotter the company sold in the early 1970’s. Resch used ball pens attached to a 

Dremmel tool and sheets of vinyl to create his sculptures at the time.

Product design
Developable surfaces combined with curved creases provide a geometric resource for de-

signers. The definition of the surfaces and behavior of the creases allow for the manipulation 

Fig 2.2.9 Lamp designs  #171 to 178 by Poul Christiansen, 1969 to early 2000’s

of a flat surface that can assume fairly complex shapes. Most materials come in the form of 

sheets, so called ‘sheet goods’, and a designer can shape these sheets without the need of 

a mold.

 The lamps by the Le Klint serve as an excellent example to demonstrate the poten-

tial of curved creases in design. The designs consist of one material and a method for fold-

ing the company has perfected over many years. Le Klint sells lamps that have been folded 

into pleats with straight lines starting in 1943 [Kli 43]. The designs are still produced from 

long sheets of lamp shade foil by hand toady and are mostly based on cylindrical configu-

rations [Jac 08]. Architect Poul Christiansen, born in 1947 and trained at the Royal Danish 

Academy of Fine Arts’ School of Architecture, designed the lamps (Fig 2.2.9). He worked 

for Ib & Jørgen Rasmussen from 1977 to 1986 and founded ‘Komplot Design’ together with 

Boris Berlin in 1987. In 1969 Christiansen discovered that folding with mathematical curves 

gave the lamp shades beautiful and unique sculptural shapes. His most famous creation is 

the SinusLine series which he developed by combining sine curves such that they fold into a 

spherical shape. In a phone conversation in 2012 Christiansen reported that there were no 

classes on paperfolding in the late 1960’s. ‘I found out about this all by myself, and it was re-

ally a wonderful feeling to discover all these 3d shapes, when folding along curves.’ he said. 

He first tried to implement the shapes in architectural projects, inspired by similar construc-
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Fig 2.3.4 ‘Space curve’ renderings (1971-72, Ephraim Cohen, Paper model (1971-72, Ron Resch)

 Resch and Cohen investigated curved creases together. Cohen conjectured that 

every space curve could be used to construct 3 distinct pairs of surfaces that have a curved 

crease on that very curve. Cohen implemented the idea in his software ‘Dev’, which com-

putes a pair of developable surface from a space curve. His software was able to compute 

different folding angles, but he used constant angle configurations with 90° for the published 

renderings of the ‘Space curve’ (Fig 2.3.3 and 2.3.4).

 An iteration of the design with an upwards spiraling curve was visualized in the form 

of early computer renderings, the kind of image the University of Utah with its efforts in com-

puter graphics was known for (Fig 2.3.3). The screen shots were taken with the previously 

mentioned photo camera that was permanently mounted to one of the PDP’s. In the upper 

left images we can observe how Cohen was able to construct the 3d configuration digitally.

Resch’s physical paper version of the design is depicted on the lower right [Res 74a].

 A second variation of the design consisted of a cyclic tiling with 3 parts (Fig 2.3.4). 

The similar arrangement of images shows screen shots renderings and Resch’s paper 

model with less material in the center area.

Fig 2.3.4 ‘Space curve’ renderings (1971-72, Ephraim Cohen, Paper model (1971-72, Ron Resch)
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Fig 2.3.5 Mapping of trace on Gauss sphere, crease pattern and corresponding dual (Huffman)

 Resch and Cohen wrote an write up or manuscript on space curves that formed the 

basis for Cohen’s software and Huffman keeps a copy of the work among his notes. Accord-

ing to Cohen the work was never published.

 Huffman contributed in several ways to our current understanding of curved creases. 

He was interested in finding representations of creases in ways that can be useful for com-

putational processes. In 1978 ‘Surface Curvature and Applications of the Dual Representa-

tion’ introduced a dual representation that was based on mapping the normal vector of a 

plane on a Gaussian sphere [Huf 78]. Given a vertex with 4 edges as shown at the top left 

drawing (Fig 2.3.5) we can draw the normal vectors to the planes that are described by the 

edges and intersect them with a sphere. The resulting points are labeled the same way as 

the planes in the original configuration. A trace on the sphere can be drawn between adja-

cent planes in the dual picture as shown at the bottom left in the same figure. This image 

can be normalized by projecting it onto a plane, which allows us to draw it as shown on the 

far right. Huffman elaborates on proportions and relationships that can be studied in this 

dual image. He creates the flat foldable crease pattern to the left of the dual.

 Huffman’s most studied earlier paper ‘Curvature and Creases: A Primer on Paper’ 

from 1976 represents the core of what we know about curved creases today, which unfor-

tunately only reveals the behavior of a crease at a point [Huf 76]. Huffman uses the dual 

representation already in this paper and elaborates on observations for special cases. He 

draws a crease that lies in a single plane parallel to the projection plane of the drawing (Fig 

2.3.6). The dual representation, shown below, indicates that the 2 regions of the paper on 

the left and right side of the crease are concave and convex.

 The tangents in the dual representation of the single vertex, denoted as L3 and R3, 

are parallel to each other. Huffman compares this special case to a general case in the 2 

Fig 2.3.6 Crease in plane and dual, General case and dual (Huffman)

diagrams on the right, where the rulings on the left and right side of the crease are not on 

the same line in 2d.

 Dmitry Fuchs and Serge Tabachnikov [Tab 99] further Huffman’s work and contrib-

uted to the understanding of curved creases in several ways in their publication ‘More on 

Paperfolding’ in 1999. They assess that it is possible to fold an arbitrary 2d curve on paper 

into a 3d crease with higher curvature. If the 2d curve is strictly convex and closes onto itself 

(e.g., a circle) then the folded 3d crease is not in a plane. They also elaborate on the behav-

ior of rulings along folded creases.

 Erik Demaine and his colleagues [Dem 09a] describe how paper behaves between 

creases and mathematically explain why only curved creases can produce interesting 

curved surfaces. In other words, a surface surrounded by straight creases cannot bend and 

must stay polyhedral.  Even though these local analyses form the base of other geometric 

design approaches, these general results themselves often stop at the first crease, while 

multiple creases are typically used in practical designs.

Inverse calculation of a crease
If a specific 2d curve is used as the crease template and one of the surfaces is bent, what 

will the surfaces on the other side fold into? Robert Geretschläger [Ger 09] sets out to un-

derstand curved creases by predefining the geometry of a piece of paper in its curved state. 
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Fig 3.2.1 Huffman’s labeling convention for trihedral objects

3.2 DAH, a visual biography

In order to elucidate Huffman’s thoughts on design and creativity this section presents the 

previously mentioned models, drawings photographs and other artefacts to show how his 

sense of aesthetics developed over time.

Edges and Lines
Huffman keeps a log of a final technical report for a project at Stanford Research Institute 

(SRI) for the Air Force in 1972, but not the report itself. It was likely related to Huffman’s 

achievements in machine vision as that was the focus of his work at SRI. It is unclear when 

exactly Huffman started to gain interest in the logical analysis of scenes with ambiguous or 

impossible objects that are represented by lines. However, by the mid 1960’s Adolfo Guz-

man-Arenas, who occupied the office next to Huffman’s on the 8th floor of 545 Technology 

Square, conducted work in that field. In an e-mail conversation, Guzman mentions: ‘Prof. 

Huffman was in my Ph.D. thesis committee (1967-68), together with Profs. Minsky, Papert, 

and Licklider. So he knew my thesis work. I think he was puzzled by the idea that the ‘propa-

gation of the restrictions’ (discovered by me) imposed by the vertices of polyhedra must 

have some reason, which needed to be discovered.’

 Max Clowes, British researcher in Artificial Intelligence, was in London in 1970 and 

was also working on the interpretation of pictures by computers. Guzman spent the summer 

of that year at the University of Edinburgh, when Donald Michie organized his Sixth Machine 

Intelligence Workshop. Guzman explains ‘I attended it. So did Prof. Huffman, who then pre-

sented his work ‘Impossible objects as non-sense sentences’.’ [email Guz 2014] Prior to the 

conference Clowes had wanted to formalize the propagation of labels with Guzman, but they 

did not engage in the effort. Huffman did, refined the work and published it.

Fig 3.2.2 Lecture slides of impossible objects (1974, DAH [DAH])

 The scenario we need to imagine consists of a machine trying to make sense of what 

it sees. Starting with a digitized image or video feed of a scene a machine can detect edges 

of objects and can then, using Huffman’s labeling and reasoning (Fig 3.2.1), infer, if the 

intersecting edges describe a polyhedral object or if these edges result in what he called an 

impossible object. He described his proof as an image grammar. ‘I wanted to create a sieve 

so grammatical pictures would go through and ungrammatical images would be seen as 

unrealizable,’ he said. [Sti 91]

 Huffman’s interest in the work started at a time when he was already contemplating 

on leaving MIT. After several trips to the West that fueled a fascination with the outdoors of 

the Grand Canyon, Yellowstone and alike Huffman became a visiting professor at Stanford 

University and worked at the Stanford Research Institute (SRI) in Menlo Park. The Artificial 

Intelligence Center at SRI was focused on an autonomous robot called Shakey and the 

team used his notation for polyhedral object recognition. In ‘Artificial Intelligence: A New 

Synthesis’ by Nils Nilsson we can find a depiction of a typical scene Shakey would have 

encountered and the illustrations explain how Huffman’s notation is used [Nil 98].

3.	David Albert Huffman (DAH)
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Fig 3.2.7 Ron Resch and his SLC Paper Folding Lab, (left Nov. 1972; right, undated)

vestigations. As the only available dates exist on Huffman’s slides it is however unclear, if all 

the work originated in that year. 

 Regarding Huffman’s mathematical work on curved creases we can trace his aca-

demic endeavors in terms of his lectures. The link between polyhedral objects in scene 

analysis and paperfolding was obvious to Huffman. His grant applications and lectures help 

elucidate the connection between the 2 fields. He presented a precursor to his primer on pa-

per when he returned to the University of Utah in May of 1974 and delivered a lecture called 

‘Curvature, convexity, concavity, creases, and crinkles’. Ron Resch celebrated his ‘Flexible 

structures” exhibition on May 23rd, 1974, and showed the ‘Space curve’ model and his ‘Tetra 

ball screen’. It appears likely that Huffman witnessed the work during his trip. In April 1975 

Huffman lectured again at the University of Utah, this time to lecture on ‘Curvature, convex-

ity, concavity on zero-curvature surfaces’. In May of 1976 he finally presented his primer 

at the UCLA Extension Conference on Computer Graphics, Pattern Recognition and Data 

Structure called ‘Curvature and Creases: A Primer on Paper’.  

 Huffman’s NSF applications also provide background information on how curved 

creases and previous work relate. His paper ‘Realizable Configuration of Lines in Pictures 

of Polyhedra’ quotes an NSF Grant with No GJ-28451. The final technical letter report for 

this grant with a starting date of July 1st 1971, the time when he published the impossible 

objects work, and a completion date of June 30 1975 is called ‘Logical Problems of Visual 

Perception’. Curiously, it includes Huffman’s entire primer on paper as reference at the end. 

This occurred prior to its publication and Huffman did not elaborate on the nature of the 

Fig 3.2.7 Ron Resch and his SLC Paper Folding Lab, (left Nov. 1972; right, undated)
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Fig 3.2.8 Exhibition at UCSC in 1978, Huffman’s living room (undated, [TG]) 

not even sure how to define art. But I find it natural that the elegant mathematical theorems 

associated with paper surfaces should lead to visual elegance as well.’ Huffman’s position 

relative to art may sound naive, but it reveals that there existed an appreciation on his part 

and an acknowledgement of disciplinarity, which he wished to cross, but not disturb. ‘What is 

perhaps most exciting of all is to lecture on this work to both artists and scientists,’ he contin-

ued ‘and to have each group understand and appreciate what I have done.’ [Atc 79]

 During another exhibition at UCSC in 1978 he showed an expanded repertoire and 

included many curved crease models (Fig 3.2.8 top left). The question of the relationship 

to art reappeared in the form of several lectures and we can study his opinion on the mat-

ter by reviewing the titles. One of the shows at UCSC was called ‘A Scientist Looks at the 

Art of Paperfolding’, a lecture at the Santa Clara Valley chapter of the Information Theory 

Group ‘Presentation on Paper Sculptures by David A. Huffman’. Further lectures at UCLA, 

Cal Tech, UCSC, MIT and at the Sperry Research Center were called ‘The Polyhedral Flex-

ing of Paper’ and ‘Plane Facts About the Art of Paperfolding’ and ‘A Scientist Looks at the 

Art of Paperfolding’, the first two titles. The titles indicate that he was willing to publicly show 

his work and also call it sculptural, not something he did prior to these experiences. We can 

also observe on a photograph of his living room how he displays his work at home (Fig 3.2.8 

right). The titles also declare his attitude toward the spelling of the word paperfolding and the 

consistent use of folding rather than origami for his own work.

Fig 3.2.8 Exhibition at UCSC in 1978, Huffman’s living room (undated, [TG])

3.	David Albert Huffman (DAH)
3.1	 DAH, a visual biography
	 Edges and Lines
	 Paperfolding and curved geometry
	 Exhibiting and the value of art
	 Photographing
	 Making objects
	 Designing



MIT 2017

Fig 3.2.12 Detail photographs of straight crease tilings (1978, 1978,1977, DAH [DAH])

Fig 3.2.11 ‘4-lobed, cloverleaf design’ (probably 1977 DAH [DAH])

Fig 3.2.12 Detail photographs of straight crease tilings (1978, 1978,1977, DAH [DAH])

Fig 3.2.11 ‘4-lobed, cloverleaf design’ (probably 1977 DAH [DAH])

Fig 3.2.11 ‘4-lobed, cloverleaf design” (probably 1977 DAH [DAH])
Fig 3.2.12 ‘Detail photographs of straight crease tilings (1978, 1978, 1977, DAH [DAH])
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Fig 3.3.1 Conic sections, scaled parabola and a combination of curves (some from 1976 DAH [DK])

 Spirals also appealed to Huffman and I present his repertoire of converging curves at 

the very end of the taxonomy (Fig 3.3.2 right). The curves did not provide him with the same 

reflection properties and he thus could not predict where the rulings would be. This is also 

the reason why I can’t provide any gadgets for the designs that use converging curves. The 

spiral shown here relies on polar coordinates, which explains Huffman’s choice of plain pa-

per versus graph paper. He defines the relation of the curve as r = Φ. He used a few spirals 

that, when used on an appropriate coordinate system, have an angle preserving qualities.

Curve Plotting
Since Huffman did not use a computer for any of his work, he was confined to a pen and a 

calculator. Incrementally plotting the points of the curves he wanted to work with on graph 

paper gave him the control he wanted. The examples of an ellipse and a hyperbola testify to 

Fig 3.3.1 Conic sections, scaled parabola and a combination of curves (some from 1976, DAH [DK])
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Fig 3.3.2 Sketch (undated, DAH [DAH]), Drawing (undated, DAH [DAH])

Fig 3.3.3 Sketches of curve plotting on graph paper

the practice (Fig 3.3.3). One can easily imagine that Huffman took a liking for graph paper 

and integer coordinates as he drew hundreds of curves for his explorations and I will show 

many examples where that is the case.

Discrete curves
In one of his grant applications Huffman investigated a discrete version of a continuous de-

sign. The polygonal approximation of a curve is a technique Huffman used to verify specific 

aspects of crease patterns. The 2 shown examples stem from an NSF proposal and consist 

of parabolic curves and 2 different discrete approximations (Fig 3.3.4). Discrete representa-

tions of curves may have felt natural to Huffman, as he was a computer scientist and com-

Fig 3.3.2 Sketch (undated, DAH [DAH]), Drawing (undated, DAH [DAH])

Fig 3.3.3 Sketches of curve plotting on graph paper

the practice (Fig 3.3.3). One can easily imagine that Huffman took a liking for graph paper 

and integer coordinates as he drew hundreds of curves for his explorations and I will show 

many examples where that is the case.

Discrete curves
In one of his grant applications Huffman investigated a discrete version of a continuous de-

sign. The polygonal approximation of a curve is a technique Huffman used to verify specific 

aspects of crease patterns. The 2 shown examples stem from an NSF proposal and consist 

of parabolic curves and 2 different discrete approximations (Fig 3.3.4). Discrete representa-

tions of curves may have felt natural to Huffman, as he was a computer scientist and com-
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Fig 3.4.3 French curves sets with Huffman’s markings [EAH]

Fig 3.4.4 Custom made templates [EAH]

Huffman put to use for a very long time. The Plan Master Model 350 TW, a drafting table 

with a wooden top covered with soft vinyl was the first item on the list. The K&E Auto-flow 

Mark II Drafting machine mounted on the left side and a LUXO adjustable lamp mounted on 

the right were the next essential auxiliary items. Lastly an Interroyal adjustable chair accom-

panied the set (Fig 3.4.2). 

French curves and custom templates
Huffman owned several sets of French curves still available today. The sets were popular 
Fig 3.4.5 X-Acto Letraset Craft Burnisher [DK]

until the 1980’s for designers in general and some sets were specifically tailored for fashion 

designers. He obviously used these very often and it is remarkable to see how many sub-

sections he marked on his acrylic curve sets (Fig 3.4.3).

 Huffman also made his own templates for curves he used frequently such as the dis-

played parabolic curve templates. He made one version in glass fiber reinforced plastic with 

a scored center axis (Fig 3.4.4 left). The other template was cut out of a sheet of Plexiglas 

(Fig 3.4.4 right).

The ball burnisher
In a text Huffman wrote for one of his exhibitions at UCSC he says ‘The only tools I use are 

ball burnishers to imprint the network of creases on the vinyl paper surface and templates.’

 The ball burnisher, a spring loaded adjustable tool, specifically developed by X-Acto 

for rub-on lettering by the Letraset company, enabled Huffman to master the craft of vinyl 

folding (Fig 3.4.4). The tool commonly used in the 1970’s to transfer printed patterns onto 

plans was adapted by Huffman to pre-crease his white vinyl sheets. He used ball point pens 

in a similar way in order to pre-crease his paper models.

Folding aids 
Huffman made some of his own tools out of recycled materials and converted several mar-

garine container cut-outs to folding-aids. The nifty tools featured a variety of radii along their 

edges in order to facilitate gradual creasing must have incurred substantial use over the 

years (Fig 3.4.6).

 Huffman described the process of making his vinyl models: ‘The individual creases 

are then slowly and patiently deepened, a little at a time, while the proper relative angles 

among the creases are maintained. Finally the sculpted surface must be fastened to a frame 

Fig 3.4.6 Folding aids made of recycled margarine containers [EAH], Compass set and knives [EAH]

or backing to preserve the desired conformation.’

 Huffman’s compass sets included a channel beam bar compass by Alvin. Finally his 

many scalpels and knives fully equipped the tool drawer that was attached to his 350 TW 

(Fig 3.4.6 right).

3.	David Albert Huffman (DAH)
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I  Reflection

II  Refraction Gadgets

III  Forced Rulings

IV  Converging Curves

4. A taxonomy of DAH’s curved crease paperfolding work
 Archival material
 The taxonomy
	 Definitions	of	crease	pattern,	ruling	and	gadget
 Individual designs
 The categories of the taxonomy
 The tile of a crease pattern

 4.1 Cylinder reflection
	 	 Cylinder	reflection	along	sine	curve	or	along	parabola
	 	 Cylinder	reflection	along	sine	curve	and	tucking
	 	 Discrete	cylinder	reflection
 4.2   Cone reflection
	 	 Cone	reflection	between	two	planes
	 	 Cone	reflection	with	rotating	axis
	 	 Cone	reflection	parallel	to	axis
 	 Cone	reflection	and	tucking
	 	 Cone	reflection	of	general	and	partial	cones

 4.3 Gadgets with ellipses
  Single ellipse
  Gadgets with ellipses and tucking
 4.4 Gadgets with parabolas
  Gadgets with parabolas and pleating
  Gadgets with parabolas and line segments
  Gadgets with parabolas and line segments with a smooth transition
  Gadgets with parabolas, line segments and circles
  Gadgets with parabolas and line segments with inverted smooth transition
  Gadgets with parabolic splines
  Gadgets with parabolic splines with inclined axis
  Gadgets with parabolic splines and circles
  Gadgets with pleated parabolic splines
  Gadgets with parabolic splines and line segments
  Gadgets with parabolic splines and line segments for Donald Knuth
  Gadgets with mixed splines and line segments
 4.5 Gadgets with hyperbolas
 4.6 Gadgets with parabolas and ellipses
  Gadgets with parabolas, ellipses and line segments
 4.7 Gadgets with parabolas, circles and ellipses
  Gadgets with parabolas and circles 
  Gadgets with parabolas and ellipses 
 4.8 Gadgets with ellipses and hyperbolas
  Gadgets with ellipses, hyperbolas and line segments
  Gadgets with elliptic and hyperbolic splines
 4.9 Gadgets with ellipses, parabolas and hyperbolas

 4.10 Cone and cylinder gadget

 4.11 Cyclic tilings with converging curves
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Fig 4.9 Prototiles and design tiles [DK]

Edge of prototile along
ruling or crease

Edge of
Design-tile

Edge of prototile 
across rulings

Isometry and Symmetry Groups:

Grünbaum and Shephard define 4 types of isometries, mappings of the Euclidean plane E2 

onto itself, which preserves all distances.

1. Rotation about a point O through a given angle θ. When θ = π , the rotation equals   

 a ‘halfturn’ or ‘central reflection’.

2. Translation in a given direction through a distance.

3. Reflection in a given line L can be thought of as the ‘mirror’ or ‘line of reflection’.

4. Glide Reflection in which reflection in a line L is combined with a translation    

 through a given distance d parallel to L.

The symmetry groups are defined as:

cn, the cyclic group of order n or n-fold rotational symmetry

dn, the group of all isometries of cn together with all reflections or n-fold dyhedral symmetry

Further definitions:

The elements of a tiling can be summarized as vertices, creases, rulings, tiles and tile 

edges. The degree of a vertex is the number of endpoints of creases that end in it. A tile ad-

jacent to another tile shares an edge. Congruence, the similarity of two tiles, shall be under-

stood to include flipping. A tiling that consists of a single prototile is monohedral. A singular 

point is a vertex where rotational tiles meet. A tiling is finite or complete, when all prototiles 

can be drawn and no tile can be added. Unbounded tiles have an open edge. Confocal 

means that several foci share an identical vertex.

4.	A taxonomy of DAH’s curved 		
	 crease paperfolding work
	 Archival material
	 The taxonomy
	 Definitions of crease pattern, ruling and gadget
	 Individual designs
	 The categories of the taxonomy
		  [I  Reflection]
		  [II  Refraction Gadgets]
		  [III  Forced Rulings]
		  [IV  Converging Curves]
	 The tile of a crease pattern
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Fig 4.1.10 ‘Horizontally-fluted column’ (1977, DAH [TG]), Paper model (1977, DAH [DAH])

Fig 4.1.11 Vinyl model (1977, DAH [DAH]), Crease pattern [DK]

a

b

T

Huffman calls the above design ‘Horizontally-fluted column’ in one of his inventory lists and 
photographs both paper and vinyl versions. The paper model consists of less tiles than its 
pristine vinyl relative (Fig 4.1.10). Concave and convex surfaces alternate in the tiling that 
consists of mountain folds only. The reflection plane can be seen on the left and right side of 
the image of the paper model as the curved crease collapses into a line in perspective.

Fig 4.1.10 ‘Horizontally-fluted column’ (1977, DAH [TG]), Paper model (1977, DAH [DAH])

Fig 4.1.11 Vinyl model (1977, DAH [DAH]), Crease pattern [DK]

a

b

T

Huffman calls the above design ‘Horizontally-fluted column’ in one of his inventory lists and 
photographs both paper and vinyl versions. The paper model consists of less tiles than its 
pristine vinyl relative (Fig 4.1.10). Concave and convex surfaces alternate in the tiling that 
consists of mountain folds only. The reflection plane can be seen on the left and right side of 
the image of the paper model as the curved crease collapses into a line in perspective.

Fig 4.1.12 Model by Ogawa, Vinyl model in flat state (1977, DAH [DAH])

Crease pattern and ruling analysis

Huffman scales the sine curve and the gadget occurs rotated 90° in this case. His pho-
tograph of the traces on the inside of the design prior to folding reveals an a to b ratio of 
approximately 1 to 1.3 (Fig 4.1.11), which is smaller than 1 to π/2. The prototile remains the 
same as in previous examples, but he mirrors it along the vertical axis into 6 undulating sine 
curves. We can visually interpret the resulting crease pattern as a monohedral tiling made of 
the design tile drawn in yellow.
 Due to the symmetries and regularities of the design the parallel rulings remain 
within a plane during folding. All tangent points where the sine functions change curvature lie 
on the same ruling. As a result the 6 creases can be folded such that the surface to the left 
of crease 1 and right of crease 6 can become congruent and form a cylindrical enclosure.

Notes

Huffman might take a similarly undulating example in ‘Forms of paper’ as inspiration, it is 
however unclear when he obtains the 1971 edition by Hiroshi Ogawa [Oga 71]. The design 
uses smoothly connected arc segments, but is not depicted as a crease pattern that creates 
an enclosure (Fig 4.1.12). The creases also do not touch one another, which is a salient 
feature of Huffman’s design.
 Regarding the vinyl version Huffman adds columns of incomplete tiles in order to be 
able to glue congruent surfaces to each other. He documents the visible side of the model 
prior to folding it (Fig 4.1.12 right).

Fig 4.1.12 Model by Ogawa, Vinyl model in flat state (1977, DAH [DAH])

Crease pattern and ruling analysis

Huffman scales the sine curve and the gadget occurs rotated 90° in this case. His pho-
tograph of the traces on the inside of the design prior to folding reveals an a to b ratio of 
approximately 1 to 1.3 (Fig 4.1.11), which is smaller than 1 to π/2. The prototile remains the 
same as in previous examples, but he mirrors it along the vertical axis into 6 undulating sine 
curves. We can visually interpret the resulting crease pattern as a monohedral tiling made of 
the design tile drawn in yellow.
 Due to the symmetries and regularities of the design the parallel rulings remain 
within a plane during folding. All tangent points where the sine functions change curvature lie 
on the same ruling. As a result the 6 creases can be folded such that the surface to the left 
of crease 1 and right of crease 6 can become congruent and form a cylindrical enclosure.

Notes

Huffman might take a similarly undulating example in ‘Forms of paper’ as inspiration, it is 
however unclear when he obtains the 1971 edition by Hiroshi Ogawa [Oga 71]. The design 
uses smoothly connected arc segments, but is not depicted as a crease pattern that creates 
an enclosure (Fig 4.1.12). The creases also do not touch one another, which is a salient 
feature of Huffman’s design.
 Regarding the vinyl version Huffman adds columns of incomplete tiles in order to be 
able to glue congruent surfaces to each other. He documents the visible side of the model 
prior to folding it (Fig 4.1.12 right).

Fig 4.1.10 ‘Horizontally fluted column’ (1977, DAH [TG]), Paper model
Fig 4.1.12 Model by Ogawa, Vinyl model in flat state (1977, DAH [DAH])
Fig 4.1.11 Vinyl model (1977, DAH [DAH]), Crease pattern [DK]
Fig 4.1.1 Cylinder reflection through a plane

4.	A taxonomy of DAH’s curved 		
	 crease paperfolding work
	 [I  Reflection]

4.1	 Cylinder reflection
	 Cyl. reflection along sine curve or parabola
	 Cyl. reflection along sine curve and tucking
	 Discrete cylinder reflection
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Fig 2.3.1 Developable surfaces: plane, general cylinder, general cone, tangent surface

2.3 Mathematical and computational approaches for curved creases

In order to make curved folding teachable and applicable to design, it is necessary to under-

stand the geometric nature of curved creases. Only special cases of curved creases can be 

mathematically defined as, still today, very few mathematical descriptions of curved creases 

exist. We don’t know which configuration a general curve in 2d can assume when folded in 

3d. The problem has been investigated by mathematicians, computer scientist, engineers 

and artists with fairly different approaches. Some investigations have resulted in the devel-

opment of tools and simulation software, which I address in the individual sections.

 This chapter presents the work in the categories of a previously published paper by 

Erik and Martin Demaine, Tomohiro Tachi and me [Dem 11a]. I begin with general defini-

tions of developable surfaces and subsequently expand on the categories of ‘Constructive 

geometric approach’, ‘Differential geometric analysis’, ‘Inverse calculation of a crease’ and 

‘Discrete geometric approach’ beyond the previously published paper.

 The description of the surfaces on either side of a curved crease have to follow prin-

ciples. They often consist of smooth composites of developable surfaces, so called ‘piece 

wise smooth’ developable surfaces. The more general case of a surface with double curva-

ture or compound curvature can not be obtained with paper. This is also the case for ruled 

surfaces that have straight moments in them, but are not developable

Developable surfaces
Paper, mathematically speaking, can only assume the shape of a developable surface. 

There exist 4 cases (Fig 2.3.1). The 1st case is a plane. The 2nd case consists of cylinders, 

which can be thought of as a bent piece of paper or a curve that is extruded along a straight 

line, the line that prevents double curvature in the paper. If these rulings all meet in a single 

vertex, we get the 3rd case, which is a conical surface. As the base curve can be arbitrary, 

Fig 2.3.2 Reflection of a general cylinder through a plane

general cones are included. The last case is composed of tangent surfaces.

 Leonhard Euler, the18th century Swiss mathematician and physicist, described a 

developable surface as a subset of ruled surfaces. It consists of a one-parameter family of 

straight lines called ‘rulings’. The tangent planes to a developable surface at every point 

along a ruling are coplanar. One can imagine holding a ruler up to that surface and it would 

touch along the ruling. In the general case the lines are tangent to a space curve called the 

‘edge of regression’ [Tab 99]. This means that the envelope of all the one-parameter planes 

is the previously mentioned tangent surface (Fig 2.3.1 right).

 Paper surfaces can consist of combination of patches that follow the described 

constraints, but the edges of these patches must have a common tangent, hence the term 

‘piece wise smooth’.

Constructive geometric approach
One of the simplest design methods for curved crease folding is to use reflection. We start 

with a single developable surface, for example a general cylinder and cut it with a plane. We 

subsequently reflect or mirror it through the plane (Fig 2.3.2). We obtain a curved crease 

that, by definition, lies in a plane.

 This reflection is a special case of curved folding, where the rulings don’t change 

direction in the flat state and the crease lies on a single osculating plane [Huf 76]. All devel-

opable surfaces are available for this kind of approach and this simple yet effective method 

has been used by several artists. The taxonomy in chapter 4 starts with such examples by 

Huffman that are based on reflected cylinders and cones.

 The crease pattern for reflections of cylinders consist of parallel rulings, and reflec-

tions of cones result in rulings that converge in a single point, the apex of the cone. The 

predictability of the location of the rulings lends itself to developing discrete solvers such as 

Jun Mitani’s ORI-REF software, discussed in the last chapter on design approaches.

Reflection of a general cylinder through a plane

Developable surface: plane, general cylinder, general cone, tangent surface
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Fig 4.2.43 3d model [UP]

Fig 4.2.42 Folded section [UP]

4.2.41). Huffman carefully calibrates the reflections such that no truncated cones pass 
through the base and appears to use equal distances from crease to crease indicated as a 
and b. The algorithm would consist of an uneven number of reflections with the 1st, 3rd, 5th 
and last reflection as sloped plane.
 The crease pattern of the equilateral cone consists of 4 mountain folds and 3 arcs 
as valley creases (Fig 4.2.44). The distances a and b give the crease pattern a very regular 
appearance.

Notes

In Huffman’s documentation we can see a straight tab-like extension (Fig 4.2.45 left). Since 
it does not follow the corresponding arc, Huffman completes the model without it (Fig 4.2.45 
center). He appears to not be content with the quality of his execution and mentions in one 
of his inventories that this model should not be exhibited because the seam is not crafted 
well enough .

Fig 4.2.43 3d model [UP]

Fig 4.2.42 Folded section [UP]

4.2.41). Huffman carefully calibrates the reflections such that no truncated cones pass 
through the base and appears to use equal distances from crease to crease indicated as a 
and b. The algorithm would consist of an uneven number of reflections with the 1st, 3rd, 5th 
and last reflection as sloped plane.
 The crease pattern of the equilateral cone consists of 4 mountain folds and 3 arcs 
as valley creases (Fig 4.2.44). The distances a and b give the crease pattern a very regular 
appearance.

Notes

In Huffman’s documentation we can see a straight tab-like extension (Fig 4.2.45 left). Since 
it does not follow the corresponding arc, Huffman completes the model without it (Fig 4.2.45 
center). He appears to not be content with the quality of his execution and mentions in one 
of his inventories that this model should not be exhibited because the seam is not crafted 
well enough .

Fig 4.2.45 Vinyl model (1978, DAH [DAH]), Identical model (1978, DAH [DAH]), Photo (1991, [MM])

Fig 4.2.44 Crease pattern [DK]

A

b

b

b

a a a

 This is the only reflected cone with a gradually rotating axis that Huffman makes in 
vinyl. The model was hung with a different orientation, which can be seen in Matthew Mul-
bry’s images, who photographs Huffman for an article in the Scientific American (Fig 4.2.45 
right).

Fig 4.2.42 Folded section [UP]
Fig 4.2.43 3d model [UP]
Fig 4.2.45 Drawing (1978, DAH [DAH])
Fig 4.2.44 Crease pattern [DK]

4.	A taxonomy of DAH’s curved 		
	 crease paperfolding work
	 [I  Reflection]

4.2	 Cone reflection
	 Cone reflection between two planes
	 Cone reflection with rotating axis
	 Cone reflection parallel to axis
	 Cone reflection and tucking
	 Cone reflection of general and partial cones

Fig 4.2.2 Index card (1978, DAH [DK])

Fig 4.2.1  Section and polar coordinates (undated, DAH [DK]), 3d model [UP] 

 In order to plot the developed curve on a cone Huffman derives the formula for the 
length R, the ruling on the cone that starts at the apex and ends at the crease, on one of his 
library cards (Fig 4.2.2). He calls the same length L in the previous figure and appears to 
keep that notation for other designs (Fig 4.2.2).
 The mountain crease in the crease pattern is constructed in the same manner (Fig 
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Fig 4.3.1 Index card (undated, DAH [DK])

Fig 4.3.2 Gadget with ellipses [DK]
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4.3  Gadgets with ellipses            [II Refraction gadgets]

This chapter delineates the beginning of a technique Huffman invents for himself, namely 
‘refraction gadgets’. The 2 previous chapters in the taxonomy rely on rulings that are prede-
termined by the definition of a cone or a cylinder. Here we can study an alternate way via his 
interpretation of the phenomenon in optics.
 He lets the ruling attain the role of a ray and utilizes a special property of conics as a 
way to predict the directional change of the ruling, once it passes through a crease. Huffman 
keeps a set of diagrams of the ray refraction on conics on the above index card, which we 
will see again in the introductions of new refraction gadgets (Fig 4.3.1).
 A ray that starts outside of the ellipse on the left  aims at the right focus and changes 
course when it crosses the ellipse such that it will arrive at the left focus. He provides the 
inverse case on the right.

The Gadget

The gadget relates to Huffman’s diagram on the left above (Fig 4.3.2).  The partial ellipse 
on the left intersects with 3 possible edges for a prototile. The case on the right assumes 
different edges for a prototile and has a flat triangle that Huffman uses as tuck fold in some 
cases.
 

Fig 4.3.1 Index card (undated, DAH [DK])

Fig 4.3.2 Gadget with ellipses [DK]
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4.3  Gadgets with ellipses            [II Refraction gadgets]

This chapter delineates the beginning of a technique Huffman invents for himself, namely 
‘refraction gadgets’. The 2 previous chapters in the taxonomy rely on rulings that are prede-
termined by the definition of a cone or a cylinder. Here we can study an alternate way via his 
interpretation of the phenomenon in optics.
 He lets the ruling attain the role of a ray and utilizes a special property of conics as a 
way to predict the directional change of the ruling, once it passes through a crease. Huffman 
keeps a set of diagrams of the ray refraction on conics on the above index card, which we 
will see again in the introductions of new refraction gadgets (Fig 4.3.1).
 A ray that starts outside of the ellipse on the left  aims at the right focus and changes 
course when it crosses the ellipse such that it will arrive at the left focus. He provides the 
inverse case on the right.

The Gadget

The gadget relates to Huffman’s diagram on the left above (Fig 4.3.2).  The partial ellipse 
on the left intersects with 3 possible edges for a prototile. The case on the right assumes 
different edges for a prototile and has a flat triangle that Huffman uses as tuck fold in some 
cases.
 

Fig 4.3.5 Index card (1977, DAH [DK])

Fig 4.3.6  ‘Pair-of-coupled ellipses’ (undated, [DAH] [EAH]), Identical model [EAH]

Gadgets with ellipses and tucking 

Huffman investigates designs with the ellipse gadget in a series of tilings. He calls the de-
sign ‘Pair-of-coupled ellipses’ in 1977 on an index card that explains the crease pattern (Fig 
4.3.5). The below images show the 1st vinyl model in this section, in which Huffman uses 
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Fig 4.4.47 Vinyl model (1977, DAH [DAH]), Vinyl model (1977, DAH [DAH])

Fig 4.4.46 Paper model (undated, DAH [DK]), Crease pattern [DK]

P1 P2

along the horizontal and aligned parabolas with foci on a horizontal axis. The rulings are 
also similar in the flat case. The difference consists of the mountain crease in 2nd gadget, 
which creates the mentioned concave cylinders in the center region of the design.

Note

Huffman photographs the model during its making in Fig 4.4.45 and appears to take plea-
sure in creating  artistic images with high contrasting shadows in Fig 4.4.47. 
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4.4  Gadgets with Parabolas            [II Refraction gadgets]

Ray refraction through a parabola allows Huffman to work with parallel lines, which means 
he can work with cones and cylinders at the same time within one gadget. He appears to be 
fond of this discovery and uses the gadget many times in a large variety of configurations 
and tilings. There exist 2 ways of refracting rays and the chapter starts with the version on 
the right in Huffman’s diagram (Fig 4.4.1). The gadget will resurface in a chapter that fo-
cuses on crease patterns with rotational symmetries that have a cylinder in their center. The 
gadget on the left occurs frequently in general tilings with in grid-like formations.

The Gadgets

The parabola usually starts at the axis and often ends at the latus rectum indicated in green 
(Fig 4.4.2 left). Alternatively the curve continues on either side of the axis and ends at equal 
distances from the axis. This is often the result of a mirrored gadget. Huffman uses available 
alignments and works with the logics given by the parabola. This is significant insofar as he 
is aware of the ‘design potential’ of a gadget, which he thoroughly investigates.
 The parallel rulings are on the concave side of the parabola and the edges of tilings 
usually consist of a ruling before and after refraction.
 The 2nd gadget consists of the inverse case, in which the rulings intersect in the 
focus of the parabola and become parallel on the concave side of the curve (Fig 4.4.2 right).

Fig 4.4.1 Index card (1977, DAH [DK])

Fig 4.4.2 Gadgets [DK]
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4.4  Gadgets with Parabolas            [II Refraction gadgets]

Ray refraction through a parabola allows Huffman to work with parallel lines, which means 
he can work with cones and cylinders at the same time within one gadget. He appears to be 
fond of this discovery and uses the gadget many times in a large variety of configurations 
and tilings. There exist 2 ways of refracting rays and the chapter starts with the version on 
the right in Huffman’s diagram (Fig 4.4.1). The gadget will resurface in a chapter that fo-
cuses on crease patterns with rotational symmetries that have a cylinder in their center. The 
gadget on the left occurs frequently in general tilings with in grid-like formations.

The Gadgets

The parabola usually starts at the axis and often ends at the latus rectum indicated in green 
(Fig 4.4.2 left). Alternatively the curve continues on either side of the axis and ends at equal 
distances from the axis. This is often the result of a mirrored gadget. Huffman uses available 
alignments and works with the logics given by the parabola. This is significant insofar as he 
is aware of the ‘design potential’ of a gadget, which he thoroughly investigates.
 The parallel rulings are on the concave side of the parabola and the edges of tilings 
usually consist of a ruling before and after refraction.
 The 2nd gadget consists of the inverse case, in which the rulings intersect in the 
focus of the parabola and become parallel on the concave side of the curve (Fig 4.4.2 right).

Fig 4.4.44 ‘Seven interrupted semi cylinders’  (1977, DAH [TG])

Fig 4.4.45 Vinyl model (1977, DAH [DAH]), Paper model (1977, DAH [DAH])

Huffman calls the design in Fig 4.4.44 ‘Seven interrupted semi cylinders’ and includes it in 
his exhibition at UCSC in 1978. The model introduces a new use of the parabola gadget that 
results in concave cylinders in the transition area between the tall convex cylinders at the 
top and bottom in Fig 4.4.45 on the right.

Crease pattern and ruling analysis

The similarities to previous designs in this series consist of 2 mirrored same sized gadgets 

Gadgets with parabolas and line segments with inverted smooth transition



MIT 2017

Fig 4.4.96 Vinyl model (1998, DAH [TG])

Fig 4.4.97 Drawings (undated, DAH [DK])

A very general case of the use of quadratic splines can be studied in the following example 
in Fig 4.4.96. This model is a very rare case in which Huffman does not design a symmetri-
cal crease pattern. 
	 No	single	sheet	with	a	clearly	identifiable	crease	pattern	exists,	but	among	the	many	
sketches	I	was	able	to	find	matching	curves	on	2	sheets	in	Fig	4.4.97.	It	is	unlikely	that	
Huffman used these exact sheets for the design, but many duplicates of the gadget exist 
and this design was most likely designed piece-by-pice, before he transfers the pattern onto 
vinyl.

Fig 4.4.96 Vinyl model (1998, DAH [TG])

Fig 4.4.97 Drawings (undated, DAH [DK])

A very general case of the use of quadratic splines can be studied in the following example 
in Fig 4.4.96. This model is a very rare case in which Huffman does not design a symmetri-
cal crease pattern. 
	 No	single	sheet	with	a	clearly	identifiable	crease	pattern	exists,	but	among	the	many	
sketches	I	was	able	to	find	matching	curves	on	2	sheets	in	Fig	4.4.97.	It	is	unlikely	that	
Huffman used these exact sheets for the design, but many duplicates of the gadget exist 
and this design was most likely designed piece-by-pice, before he transfers the pattern onto 
vinyl.

Fig 4.4.97 Drawings (undated, DAH [DK])
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Fig 4.4.130 Gadget definitions and variations [DK], Simulated model [UP]

Gadget axis with negative slope

Definitions and base parameters:

a’ = a + b
l’ = l + m
l’ = 1

a′  = 1/2
a = 2/3
b  = 1/6

a′ = 1/2
a  = 3/4
b  = 1/4

a′ = 1/2
a = 1
b  = 1/2

a′ = 3/4
a  = 1
b  = 1/4

a′  = 1/2
a  = 1
b  = 1/2

 Some of Huffman’s ideas with combinations of the gadget are presented in the fol-
lowing examples. The 3 designs use less symmetric tilings, but it is unclear which design 
path the contemporaries would have liked to follow had the project come to conclusion.
 Once the gadget is mirrored we obtain a shape visually reminiscent of organ pipes 
and I will refer to the shape as ‘pipes’. The complete body of work of Huffman’s endeavor to 
design a sculpture for Donald Knuth requires a more in depth study as more documentation 
might exist.

Fig 4.4.132 Crease pattern [DK]

Fig 4.4.131 Paper model (undated, DAH [DK]), Simulated model [AH], Sketch (undated, DAH [DK])
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The first presented sketch model in Fig 4.4.131 corresponds to the photo copy in Fig 
4.4.125. He sizes the 4 ‘pipes’ with different diameters and arranges them in asymmetrical 
order, which is probably in response to Knuth’s request. This model is the only design Huff-
man keeps in its folded state in his archive and it appears to have traveled quite a bit as it is 
unusually wrinkled.

CP, tiling and ruling analysis

A single pipe consists of 4 prototiles and the pipes can only be joined along the vertical if b
matches. The gadget axis is horizontal in all cases.  The design causes no problems during 
simulation

Fig 4.4.132 Crease pattern [DK]

Fig 4.4.131 Paper model (undated, DAH [DK]), Simulated model [AH], Sketch (undated, DAH [DK])
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The first presented sketch model in Fig 4.4.131 corresponds to the photo copy in Fig 
4.4.125. He sizes the 4 ‘pipes’ with different diameters and arranges them in asymmetrical 
order, which is probably in response to Knuth’s request. This model is the only design Huff-
man keeps in its folded state in his archive and it appears to have traveled quite a bit as it is 
unusually wrinkled.

CP, tiling and ruling analysis

A single pipe consists of 4 prototiles and the pipes can only be joined along the vertical if b
matches. The gadget axis is horizontal in all cases.  The design causes no problems during 
simulation

Fig 4.4.132 Crease pattern [DK]

Fig 4.4.131 Paper model (undated, DAH [DK]), Simulated model [AH], Sketch (undated, DAH [DK])
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The first presented sketch model in Fig 4.4.131 corresponds to the photo copy in Fig 
4.4.125. He sizes the 4 ‘pipes’ with different diameters and arranges them in asymmetrical 
order, which is probably in response to Knuth’s request. This model is the only design Huff-
man keeps in its folded state in his archive and it appears to have traveled quite a bit as it is 
unusually wrinkled.

CP, tiling and ruling analysis

A single pipe consists of 4 prototiles and the pipes can only be joined along the vertical if b
matches. The gadget axis is horizontal in all cases.  The design causes no problems during 
simulation

Fig 4.4.131 Paper model (undated, DAH [DK]), Simulated model [AH]
Fig 4..2 Gadget table [DK]
Fig 4.4.132 Crease pattern [DK]
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Fig 4.5.3 Paper model (undated, [DAH] [DK]), Crease pattern [DK]

Fig 4.5.4 Simulation, top and bottom view [JH]

H Ja a aa a

CP, tiling and ruling analysis

Huffman pleats 4 hyperbolas in Fig 4.5.3 by starting with a straight mountain crease in the 
center and constructing the hyperbolas with concentric circles in pencil. He separates them 
by equal distances a with alternating m and v assignments. The monohedral tiling only con-
sists of 2 unbounded prototiles. The rulings form two cones on the far left and far right of the 
CP, which is consistent with the 2nd gadget.
 The model folds reasonably well during simulation and the straight crease has a 
large folding angle in Fig 4.5.4.

Fig 4.5.3 Paper model (undated, [DAH] [DK]), Crease pattern [DK]

Fig 4.5.4 Simulation, top and bottom view [JH]

H Ja a aa a

CP, tiling and ruling analysis

Huffman pleats 4 hyperbolas in Fig 4.5.3 by starting with a straight mountain crease in the 
center and constructing the hyperbolas with concentric circles in pencil. He separates them 
by equal distances a with alternating m and v assignments. The monohedral tiling only con-
sists of 2 unbounded prototiles. The rulings form two cones on the far left and far right of the 
CP, which is consistent with the 2nd gadget.
 The model folds reasonably well during simulation and the straight crease has a 
large folding angle in Fig 4.5.4.

4.	A taxonomy of DAH’s curved 		
	 crease paperfolding work
	 [II  Refraction Gadgets]

4.5	 Gadgets with hyperbolas
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Fig 4.8.9 Vinyl model (undated, DAH [DK])

Fig 4.8.10 Photo copy of drawing (undated, DAH [DK]), Crease pattern [DK]
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Huffman continues to explore designs with ellipses, hyperbolas and circles in the following 
series that starts with the above vinyl model (Fig 4.8.9). He appears to be interested in cut-
ting the designs with ellipses and circles, which gives the series its distinct visual character. 
The rulings for all designs are not cyclic, but have a tendency to spiral towards a limit, which 
makes simulation difficult.

Crease pattern and ruling analysis

The gadget consists of 2 partial circles as valleys, 2 partial ellipses as mountains and 2 
partial hyperbolas as mountains (Fig 4.8.10). The 6 creases are defined by 3 curves, and 
the notation of h and h′ for example helps in identifying individual but related creases. The 
rulings have to assume the depicted configuration in the area between the ellipse and the 
hyperbola in order to not create a cone with its apex in F,J,C. The following crease pattern 
defines the parametric distances of the series.

Fig 4.8.9 Vinyl model (undated, DAH [DK])

Fig 4.8.10 Photo copy of drawing (undated, DAH [DK]), Crease pattern [DK]

a = 3 [1]
r = 6 [2]
f = 24  [3]
d = 6  [2]
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Huffman continues to explore designs with ellipses, hyperbolas and circles in the following 
series that starts with the above vinyl model (Fig 4.8.9). He appears to be interested in cut-
ting the designs with ellipses and circles, which gives the series its distinct visual character. 
The rulings for all designs are not cyclic, but have a tendency to spiral towards a limit, which 
makes simulation difficult.

Crease pattern and ruling analysis

The gadget consists of 2 partial circles as valleys, 2 partial ellipses as mountains and 2 
partial hyperbolas as mountains (Fig 4.8.10). The 6 creases are defined by 3 curves, and 
the notation of h and h′ for example helps in identifying individual but related creases. The 
rulings have to assume the depicted configuration in the area between the ellipse and the 
hyperbola in order to not create a cone with its apex in F,J,C. The following crease pattern 
defines the parametric distances of the series.

Fig 4.8.17 Paper models with parameter values (most undated, DAH [DK])

a = 4 [1]
r = 6 [2.5]
f = 48  [12]
d = 18  [4.5]

a = 3 [1]
r = 6 [2]
f = 24  [3]
d = 6  [2] (Fig 4.8.10)

a = 4 [1]
r = 8 [2]
f = 24  [3]
d = 4  [1] (Fig 4.8.15)

a = 2.5 [1]
r = 5 [2]
f = 10  [4]
d= 0  [0] (Fig 4.8.13) 

a = 4 [1]
r = 12 [3]
f = 20  [5]
d = -2  [-0.5] (Fig 4.8.11)

a = 4 [1]
r = 8 [2]
f = 12  [3]
d = -2  [-0.5]Fig 4.8.9 Vinyl model (undated, DAH [DK])

Fig 4.8.10 Photo copy of drawing (undated, DAH [DK]), Crease pattern [DK]
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f = 24  [3]
d = 6  [2]
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Huffman continues to explore designs with ellipses, hyperbolas and circles in the following 
series that starts with the above vinyl model (Fig 4.8.9). He appears to be interested in cut-
ting the designs with ellipses and circles, which gives the series its distinct visual character. 
The rulings for all designs are not cyclic, but have a tendency to spiral towards a limit, which 
makes simulation difficult.

Crease pattern and ruling analysis

The gadget consists of 2 partial circles as valleys, 2 partial ellipses as mountains and 2 
partial hyperbolas as mountains (Fig 4.8.10). The 6 creases are defined by 3 curves, and 
the notation of h and h′ for example helps in identifying individual but related creases. The 
rulings have to assume the depicted configuration in the area between the ellipse and the 
hyperbola in order to not create a cone with its apex in F,J,C. The following crease pattern 
defines the parametric distances of the series.

Fig 4.8.9 Vinyl model (undated, DAH [DK])
Fig 4.8.10 Photo copy of drawing (undated, DAH [DK]), Crease pattern [DK]
Fig 4.8.17 Paper models with parameter values (most undated, DAH [DK])

4.	A taxonomy of DAH’s curved 		
	 crease paperfolding work
	 [II  Refraction Gadgets]

4.6 Gadgets with parabolas and ellipses
	 Gadgets with parabolas, ellipses and line segments
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Fig 4.8.26 Crease pattern [DK]

Fig 4.8.25 Sketch (undated, DAH, DK)
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Gadgets with elliptic and hyperbolic splines

Huffman experiments with a new form of quadratic splines consisting of 3 partial ellipses 
joined with 3 partial hyperbolas. He shows a proof for the smooth connection of the configu-
ration in the above sketch (Fig 4.8.7).

Crease pattern and ruling analysis

The design consists of 2 splines with the above mentioned curves, one as mountain and one 
as valley (Fig 4.8.8). The rulings form a general cone with alternating curvature. The simu-
lated model folds reasonably well (Fig 4.8.7).

Fig 4.8.26 Crease pattern [DK]

Fig 4.8.25 Sketch (undated, DAH, DK)
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Gadgets with elliptic and hyperbolic splines

Huffman experiments with a new form of quadratic splines consisting of 3 partial ellipses 
joined with 3 partial hyperbolas. He shows a proof for the smooth connection of the configu-
ration in the above sketch (Fig 4.8.7).

Crease pattern and ruling analysis

The design consists of 2 splines with the above mentioned curves, one as mountain and one 
as valley (Fig 4.8.8). The rulings form a general cone with alternating curvature. The simu-
lated model folds reasonably well (Fig 4.8.7).

4.	A taxonomy of DAH’s curved 		
	 crease paperfolding work
	 [II  Refraction Gadgets]

4.8	 Gadgets with ellipses and hyperbolas
	 Gadgets with ellipses, hyperbolas and line segments
	 Gadgets with elliptic and hyperbolic splines
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Fig 4.10.1 Vinyl model (1992, DAH [TG])

Fig 4.10.2 Sketch (undated, DAH [DK])

4.10 Cone and cylinder gadget       [III Forced Rulings]

This section discusses a single example, which Huffman explores as a sketch and as vinyl 
model (Fig 4.10.1). He does not reveal his thoughts on the type of curve or location of rul-
ings, but spends the effort to make a vinyl model and photographs it in 1992 and again in 
1998.

Crease pattern and ruling analysis

Curve fitting does not suggest any specific curve Huffman might have used, but the sketch 
fits into a series of drawings that use scaled sine curves. The upper row can thus consist of 
a sine and a cosine curve as mountains. The next row consists of the same set of curves as 
valley creases moved over by π/2. No traces of rulings can be found on the sketch and Huff-
man does not appear to fold the sketch (Fig 4.10.2).
 One possible solution for the rulings consists of cylindrical segments within the two 

Fig 4.10.1 Vinyl model (1992, DAH [TG])

Fig 4.10.2 Sketch (undated, DAH [DK])

4.10 Cone and cylinder gadget       [III Forced Rulings]

This section discusses a single example, which Huffman explores as a sketch and as vinyl 
model (Fig 4.10.1). He does not reveal his thoughts on the type of curve or location of rul-
ings, but spends the effort to make a vinyl model and photographs it in 1992 and again in 
1998.

Crease pattern and ruling analysis

Curve fitting does not suggest any specific curve Huffman might have used, but the sketch 
fits into a series of drawings that use scaled sine curves. The upper row can thus consist of 
a sine and a cosine curve as mountains. The next row consists of the same set of curves as 
valley creases moved over by π/2. No traces of rulings can be found on the sketch and Huff-
man does not appear to fold the sketch (Fig 4.10.2).
 One possible solution for the rulings consists of cylindrical segments within the two 

Fig 4.10.4 Simulated model [AH]

Fig 4.10.3 Crease pattern [DK]

convex curves, the lens-like shape, and partial cones above and below. Their apices fall 
onto the intersection of the two neighboring lenses (Fig 4.10.3). The monohedral tiling has a 
triangular prototile and 4 of them create the diamond-shaped design tile.
 This tiling exists with any type of convex curves in the design tile. The proof is based 
on the characterization of the qualitative behavior of the rulings, while the crease pattern 
also needs to fulfill certain requirements. A smooth 3d crease can not have incident cone 
rulings and 2 concave curves cannot be joined if the mountain and valley assignments are 
different [Dem XX].
 These properties force the rulings between the ‘lenses’ to be particular cones with 
their apices falling on the previously mentioned vertices of the tiling. The tile edges need to 

Fig 4.10.4 Simulated model [AH]

Fig 4.10.3 Crease pattern [DK]

convex curves, the lens-like shape, and partial cones above and below. Their apices fall 
onto the intersection of the two neighboring lenses (Fig 4.10.3). The monohedral tiling has a 
triangular prototile and 4 of them create the diamond-shaped design tile.
 This tiling exists with any type of convex curves in the design tile. The proof is based 
on the characterization of the qualitative behavior of the rulings, while the crease pattern 
also needs to fulfill certain requirements. A smooth 3d crease can not have incident cone 
rulings and 2 concave curves cannot be joined if the mountain and valley assignments are 
different [Dem XX].
 These properties force the rulings between the ‘lenses’ to be particular cones with 
their apices falling on the previously mentioned vertices of the tiling. The tile edges need to 

Fig 4.10.1 Vinyl model (1993, DAH [TG])	 Fig 4.10.2 Sketch (undated, DAH [DK])
Fig 4.10.3 Crease pattern [DK]				   Fig 4.10.4 Simulated model [AH]

4.	A taxonomy of DAH’s curved 		
	 crease paperfolding work
	 [III  Forced Ruling]

4.10 Cone and cylinder gadget
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Fig 4.11.1 Cyclic tilings with converging curves [DK]

Fig 4.11.2 Notes and drawings (undated, DAH [DK])
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4.11 Cyclic tilings with converging curves       [IV Converging Curves]

The taxonomy includes designs by Huffman that convey little to no information on the loca-
tion of rulings starting in this chapter until the end. The sections focus on the kind of tiling 
Huffman uses and mostly belong in a category of cyclic finite tilings. The center around 
which the prototiles rotate usually consists of a point, but Huffman investigates other options 
that include line segments and polygons (Fig 4.11.1).
 In order to design crease patterns for cyclic tilings Huffman decides to work with 
converging curves or spirals. He produces many sketches of different kinds of converging 
curves and curve fitting suggests that 3 candidates get to be used in the designs, the pursuit 
curve, the tangent spiral and a spiral defined by the relationship r = Φ (Fig 4.11.2). Huffman 
plots the curves in various sizes and might have scaled the curves to fit within the boundar-
ies of his designs.
 If crease patterns are available, I try to fit these and many other curves of his reper-
toire. When I find a likely match I also provide a paper model to show the reconstruction. In 
some cases Huffman keeps a crease pattern, but no 3d image exists. I make paper models 
of these designs even fitting curves is not successful in order to provide the reader with visu-

Fig 4.11.3 Vinyl model (undated, DAH [EAH]), Paper reconstruction [AH]

Fig 4.11.4 Sketch on figure (undated, DAH [DK]), Crease pattern [DK]

α
α

s

s

Tilings with central vertex

al feedback on the folded configuration. If a reconstruction needs to be undertaken based on 
the photograph of a model, I have to revert to a trial and error process, which rarely yields 
reasonably precise results.
 The first tiling in the chapter, reconstructed from an image of the folded model, most 
probably consists of 8 pursuit curves, mentioned previously. A possible inspiration for the de-
sign consists of a small sketch (Fig 4.11.4). Huffman draws on top of a figure on page 143 of 
his own copy of ‘Mathematical Snapshots’ by H. Steinhaus. The diagram shows the concept 
of a pursuit curve based on 4 points that start walking along one edge, but orient themselves 
toward the point in front of them. He appears to draw possible directions for rulings

Crease pattern

The design consist of 4 mountain and 4 valley curves, all identical and equally rotated 
around the center.

Fig 4.11.3 Vinyl model (undated, DAH [EAH]), Paper reconstruction [AH]

Fig 4.11.4 Sketch on figure (undated, DAH [DK]), Crease pattern [DK]
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reasonably precise results.
 The first tiling in the chapter, reconstructed from an image of the folded model, most 
probably consists of 8 pursuit curves, mentioned previously. A possible inspiration for the de-
sign consists of a small sketch (Fig 4.11.4). Huffman draws on top of a figure on page 143 of 
his own copy of ‘Mathematical Snapshots’ by H. Steinhaus. The diagram shows the concept 
of a pursuit curve based on 4 points that start walking along one edge, but orient themselves 
toward the point in front of them. He appears to draw possible directions for rulings

Crease pattern

The design consist of 4 mountain and 4 valley curves, all identical and equally rotated 
around the center.

Fig 4.11.2 Notes and drawings (undated, DAH [DK])
Fig 4.11.3 Vinyl model (undated, DAH [EAH]), Paper reconstruction [AH]
Fig 4.11.4 Sketch on figure (undated, DAH [DK]), Crease pattern [DK]
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Fig 4.12.1 Vinyl model (undated, DAH [TG]), Huffman in front of ‘the peanut’ (1991 [M. Mulbry])

4.12 Tilings with loxodromic spirals         [IV Converging Curves]

In this chapter I discuss the above elaborate vinyl model, which the family casually calls ‘the 
Peanut’ (Fig 4.12.1). The design is related to Huffman’s investigation of sinks, vortexes and 
loxodromic spirals. I am relating archival material by topic as very few dates reveal when 
Huffman investigates which subject. In terms of trying to date the model itself, it is useful 
to study Matthew Mulbry’s photographs. He takes pictures of Huffman for the September 
issue of Scientific American in 1991 similar to the above image on the right and publishes 
a cropped version (Fig 4.12.1). In this uncropped shot we can see the entire model in the 
background and can state that it predates 1991.

Crease pattern

 The model consists of loxodromic spirals and I explain their definition later in the 
chapter. On the left an right side of the design 3 creases fold the edges of the paper and the 
one reaching the corner is a valley crease on either side. 9 full spirals go from pole to pole 
and their mountain and valley are assigned such that matching curves have the same direc-
tion. Huffman designs the border such that the previously mentioned valley crease lands in 
the corners of the rectangle. When hanging the model on the wall he orients the vinyl model 
the way Mulbridge and Grant photograph it.
 Huffman makes several drawn versions, in which he decides on the number of 
creases and distances between curves. The crease patterns are always constructed via a 
bipolar projection of longitudinals on a sphere. He studies options for the largest s-shaped 

Fig 4.12.2 Paper models (undated, DAH [DK])

Fig 4.12.3 Detail of paper model (undated, DAH [DK]), Crease pattern [DK]
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valley crease in a drawing, in which 5 creases reach the edge of the paper in the corners 
(Fig 4.12.4). He eventually decides to omit the iteration.
 He makes 2 drawings that relate closely to the final vinyl model (Fig 4.12.2). The first 
on the left consists of constructed pencil circles and red and blue crease lines. The second 
drawing on the right is a photo copy of the first, on which he alters creases with a red pen. 
He eventually decides to turn the first drawing into the vinyl model and omits his edits on the 
photocopied version.
 The reconstruction uses the matching coordinate tables Huffman keeps among his 
notes (Fig 4.12.5) and traces all diagonals in the bi-polar grid with a 1:2 ratio, which creates 
the loxodromic spiral he uses (Fig 4.12.3). The crease pattern differs from Huffman’s draw-
ing regarding the valley creases that cross the left and right edge of the paper. The crease 

Fig 4.12.4 Paper model (undated, DAH [DK])
Fig 4.12.2 Paper models (undated, DAH [DK])
Fig 4.12.1 Vinyl model (undated, DAH [TG]), Huffman in front of ‘the peanut’ (1991 [M.Mulbry])
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Fig 4.12.3 Detail of paper model (undated, DAH [DK]), Crease pattern [DK]
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valley crease in a drawing, in which 5 creases reach the edge of the paper in the corners 
(Fig 4.12.4). He eventually decides to omit the iteration.
 He makes 2 drawings that relate closely to the final vinyl model (Fig 4.12.2). The first 
on the left consists of constructed pencil circles and red and blue crease lines. The second 
drawing on the right is a photo copy of the first, on which he alters creases with a red pen. 
He eventually decides to turn the first drawing into the vinyl model and omits his edits on the 
photocopied version.
 The reconstruction uses the matching coordinate tables Huffman keeps among his 
notes (Fig 4.12.5) and traces all diagonals in the bi-polar grid with a 1:2 ratio, which creates 
the loxodromic spiral he uses (Fig 4.12.3). The crease pattern differs from Huffman’s draw-
ing regarding the valley creases that cross the left and right edge of the paper. The crease 

Fig 4.12.4 Paper model (undated, DAH [DK])

Fig 4.12.5 Index cards with coordinate tables (undated, DAH [DK])

in Huffman’s drawing on the left has less curvature than the ones in the crease pattern. It is 
possible that Huffman has no grid intersection that far outside of the page and hence esti-
mates the curve to be more flat.

Notes

In order to find out how Huffman may have come up with this idea I present several sketch-
es and notes of his that provide clues for a possible genesis of this design. A figure in Huff-
man’s copy of ‘Vortex Flow in Nature’ by Hans Lugt on page 50 reads: ‘Line Vortex 41 - Fig 
8.2. Streamlines of the motion due to a counteroriented vortex pair’ and might have served 
as inspiration for the design (Fig 4.12.6). He studies vortexes and sinks in general and the 
figure shows strong parallels. Even though the figure states that the vortex pair is counterori-
ented, from the perspective of someone designing a crease pattern the spirals are rotating 
in the same direction, something Huffman appears to be interested in. The second figure on 
the right depicts a set of coaxal circles from ‘Mathematical Snapshots’ by Steinhaus on page 
144. Huffman draws an additional circle on the diagrams in his book and might have thought 
of either a bi-polar coordinate system or ruling directions (Fig 4.12.6).
 In 1981 Huffman takes notes index cards that relate to a loxodromic spiral, a curve 
on a sphere that goes from pole to pole. ‘Think of a spiral that intercepts all latitude lines at 

Fig 4.12.5 Index cards with coordinate tables (undated, DAH [DK])
Fig 4.12.3 Crease pattern [DK]
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(direct digital representation)

Refraction Gadgets
(indirect digital representa-
tion)
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(direct analog representation)

Sculpting and Post-rationaliz-
ing Surfaces
(indirect analog representa-
tion)

Designing with curved creases - digital and analog constraints

Defining Design Approaches and their Design Representation



Mirror reflection of general cylinder (DK)

Work by students of Josef Albers, Black Mountain College (1950s [photographer unknown]), 
Bulletin Cover 1944 with model made in Albers’ class, Black Mountain College (1944)
Metal column covers and wall panel (Haresh Lalvani)

2 Developable Surface Reflection



3d model in ORI-REF, crease pattern (Ashley Hickman)

3d model with two reflection planes per corner, crease pattern (DK)

3d model in Rhno3d with reflection plane, crease pattern (Kalliopi Oikonomou)
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3d model of cone with two horizontal reflections, crease pattern (Ashley Hickman)

3d model of cone with two vertical reflections, crease pattern (Kalliopi Oikonomou)

3d models of cone reflections with two reflection, crease pattern (Kalliopi Oikonomou)
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Refractive properties of conic sections (1977, DAH, David A. Huffman archive)
Sketch (undated, DAH, David A. Huffman archive), Gadget (DK)

Refraction Gadgets

FE



Figure 2.2.4 Ellipse gadget, crease pattern, simulation (Kalliopi Oikonomou)

Figure 2.2.6 Simulations of gadgets with parabolas and hyperbolas, crease patterns (Kalliopi Oikonomou)
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Figure 2.2.5 Simulations of gadgets with parabolas and hyperbolas, crease patterns (Kalliopi Oikonomou)
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Bauhaus model, extended discs (Josef Albers Foundation), Horse head (Roy Iwaki)

Drawing Closed and Open Curves



Designs with self-closing curves with varying degrees of curvature (Aleksandra Chechel)

Iterations of a design made with intersecting curves (Ashley Hickman)



Sculpting and Post-rationalizing Surfaces

Fig 2.4.1 Images from The Ron Resch Paper and Stick Film (1968, Ron Resch)



Sculpting, Notation of pinching, Crease pattern
Digitized crease pattern, Paper model (UnJae Pyon, Lauren Greer)


