Locked linkages: recall

- chains
- trees
- 2D never locked ✓
- can lock ✓
- 3D can lock
- 4D+ never locked
- TODAY

Algorithms for unfolding 2D chains

① ordinary differential equation given by (canonical) expansive infinitesimal motion

\[\frac{dE}{dt} = d \]

[Connelly, Demaine, Rote 2000, 2002]

- strictly expansive (other than)
- one step in poly. time: convex program
- many steps: inaccurate (without projection)
- OPEN: how many? pseudopolynomial?

② pointed pseudotriangulations [Streinu 2000, 2005]

- expansive \(\Rightarrow \) maximal edge set on given points with \(> 180° \) angle at every vertex
- \(n^{O(1)} \) steps
- one step follows 1D.O.F. linkage \(\Rightarrow \) delete edge of convex hull
- best algorithm is exponential
- OPEN: are pseudotriangulations easier than general 2D linkages?
 (e.g. they are noncrossing)
- PROJECT: implement this algorithm
Algorithms for unfolding 2D chains: (cont’d)

3 energy

- not expansive
- one step is $O(n^2)$ & exact on real RAM
- pseudopolynomial number of steps
 \[\text{poly. in } n \& r = \text{max. dist.}/\text{min. distance} \]

Approach:

- define energy function on configurations:
 \[E(C) = \sum_{\text{edge } vw} \sum_{\text{vertex } u} \frac{1}{d(u,vw)} \]

- any energy-decreasing motion avoids crossings: approaching $O(\text{dist})$ shoots $E \rightarrow \infty$
- expansive motion decreases energy
 (in fact, every term)

⇒ energy-decreasing motions exist

⇒ downhill gradient of energy exists: $-\nabla E$
- computable in $O(n^3)$ time
- lower bound gradient, upper bound curvature

⇒ $\Theta(n^{123} r^{-41})$ step bound (!)

OPEN: improve step bound (likely not hard)

OPEN: $n^{O(1)}$ step bound possible? conjecture no

OPEN: is minimum-energy configuration unique?

for equilateral polygons, it’s a regular n-gon
Single-vertex rigid origami: [Streinu & Whiteley 2001] every folded state of a single-vertex crease pattern can be folded rigidly (continuously, faces staying rigid)

\[\bigcirc \bigcirc = \bigcirc \bigcirc \] linkage folding!

Spherical Carpenter's Rule Theorem: [Streinu & Whiteley]
closed chain of total length \(2\pi\) on unit sphere has a connected configuration space
- proof based on projective invariance of infinitesimal rigidity
- \(\text{length} \leq 2\pi \) \(\Rightarrow \) lie in hemisphere
 \(\Rightarrow \) can project to plane
- \(\text{length} = 2\pi \) \(\Rightarrow \) convex config. = equator
- \(\text{length} < 2\pi \) \(\Rightarrow \) 2 convex configs. (cw & ccw)
 \(\Rightarrow \) 2 connected components of configs.
- \(\text{length} > 2\pi \) \(\Rightarrow \) no convex configuration

Touching case (e.g. flat folding) handled by recent self-touching Carpenter's Rule Theorem [Abbott, Demaine, Gassend 2007]
Locked 2D trees:

- deg. ≥ 5
- diameter 4
- only 1 degree-3 vertex

[Biedl et al. 1998/] [Poon 2005] [Demaine, Rote 2002]

[V] 8 edges
- linear

[Ballinger, Charlton, Demaine, Demaine, Iacono, Liu, Poon 2009]

- locked linear trees have
 - ≥ 8 edges
 - ≥ 9 edges or diameter ≥ 6

[Ballinger et al.]

OPEN: 8 edges minimal for nonlinear? 14 edges minimal for orthogonal?
OPEN: characterize locked linkages
e.g. locked trees in 2D or chains in 3D
 - polynomially solvable?
 - special case: linear trees

Related problem: can you fold config. A \rightarrow config. B?
 - PSPACE-complete for 2D trees & 3D chains
 [Alt., Knauer, Rote, Whitesides 2004]
 - but their reductions use locked linkages as gadgets — so all locked
Infinitesimally locked linkages \cite{Connelly, Demaine, Rote 2002}

Intuition: in many locked examples (particularly 2D), as gaps get smaller, so do valid motions

Locked within ε = configuration from which it is impossible to get farther than ε in configuration space

Rigid = locked within \emptyset — but trees are never rigid... right?

Self-touching configuration allows infinitesimal gaps: geometric overlap, distinguished combinatorially

- now can be rigid

Return to nontouching: rigidity \Rightarrow "strongly locked"

Strongly locked = sufficiently small perturbations are locked within ε, for any $\varepsilon > 0$

S-perturbation = move vertices within S-disks, preserving combinatorial sidedness

Every self-touching has a (non-self-touching) S-perturbation, for all $S > 0$ [Ribó Mor, PhD 2006]
Proof based on “sloppy rigidity”: [Connelly 1982]
if relax the edges in a rigid tensegrity (bars can change length by δ, struts can shrink by δ, etc.)
then still can’t move more than ε

Infinitesimally locked linkages: (cont’d)

Infinitesimal rigidity:
- implies rigidity
- “zero-length strut” (linear inequality):
 u should remain right of vw
- sometimes nonconvex:

\Rightarrow conservative polynomial test (drop constraints) or exponential test (split into 2 convex)
- analogs of equilibrium stress & duality
- even Maxwell-Cremona [Ribó Mor, PhD 2006]
- nice proofs by hand: positive stress on struts
 $+ \text{ underlying linkage rigid}$
 $\Rightarrow \text{ inf. rigid}$
 $(\Rightarrow \text{ rigid})$
 $(\Rightarrow \text{ strongly locked})$

PROJECT: implement locked linkage tester/designer tool
Infinitesimal locking rules: [Connelly, Demaine, Demaine, Fekete, Langerman, Mitchell, Ribó, Rote 2006]

Rule 1:

- Acute angle
- Equal length
- Pinned together for positive time

Rule 2:

- Acute angle
- Equal length
- Ditto

Example:

- From rigid to strongly locked using Rule 1
- From strongly locked to rigid using Rule 2
3D knitting needles: locked if each end bar is longer than \sum middle bars

Proof: draw ball B centered at midpoint of middle bars, diameter $= \sum$ middle bars $+ \varepsilon$

\Rightarrow middle vertices remain inside B,
end vertices remain outside B.
\Rightarrow any motion could be augmented by an unknotted rope connecting two ends outside B.
\Rightarrow straightening motion would untie trefoil knot. \Box

OPEN: minimum possible edge length ratio for which locked 3D chain exists?
- best example is $1:3+\varepsilon$ above

OPEN: any locked equilateral 3D chain? [Biedl et al.]
equilateral 3D chain self-weaving on line [E. Demaine]
equilateral unknotted closed chains? [M. Demaine]
equilateral trees? [E. Demaine; Poon]
equilateral chain of equal-width cylinders? [O'Rourke]