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We’'ve done several
combinations of the
constraints of equilateralness,
equiangularity, and

obtusehood for 3-D chains we
want to know whether can be

locked. What about the
others?
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The geometric (cone)
model for a ribosome
seems too simple. Is it

actually based on some
verified model from
biology?




|Nissen, Hansen, Ban,
Moore, Steitz 2000]
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[L21] In proving the NP-
hardness of the 2D HP-
model folding problem,

what are the NP-hard
problems used in various
reductions?
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On the Complexity of Protein Folding
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Any progress on any of the
open problems?
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Flattening Fixed-Angle Chains
Is Strongly NP-Hard

Erik D. Demaine* and Sarah Eisenstat*

MIT Computer Science and Artificial Intelligence Laboratory,
32 Vassar St., Cambridge, MA 02139, USA

{edemaine,seisenst}@mit.edu

Problem Linkage Edge lengths  Angle range
Flattening fixed-angle chain equilateral ~ [16.26°,180°]
Flattening fixed-angle chain e(1) (60 — €, 180°]
Flattening fixed-angle caterpillar tree  equilateral {90°, 180° }

Min flat span fixed-angle chain equilateral [16.26°, 180°]

Max flat span fixed-angle chain equilateral  [16.26°,180°]
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(a) Zig-zag gadget.

(b) Turn gadget. (c) Switch gadget. (d) Articulation gadget.

[Demaine & Eisenstat 2011]
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ADVANCED PROBLEMS

3763. Proposed by Paul Erdios, The University, Manchester, England.

Given any simple polygon P which is not convex, draw the smallest convex
polygon P’ which contains P. This convex polygon P’ will contain the area P
and certain additional areas. Reflect each of these additional areas with respect
to the corresponding added side, thus obtaining a new polygon P,. If P, is not
convex, repeat the process, obtaining a polygon P,;. Prove that after a finite
number of such steps a polygon P, will be obtained which will be convex.

Erdos 1935


Presenter
Presentation Notes
Top: Figure 5.23 of GFALOP.  Bottom: Scan from 1936 article (out of copyright), http://www.jstor.org/sici?sici=0002-9890(193512)42:10%3C625:PFS3%3E2.0.CO;2-2&


Erdos 1935
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de Sz. Nagy 1939
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Joss & Shannon 1973
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Reference Genesis

Nagy [dSN39] §3.1 | Erdds [Erd35]

Reshetnyak [Res57] §3.2 | independent®

Yusupov [Yus57] 83.3 | independent®

Bing & Kazarinoff §3.4 | Erd6s [Erd35],

[KB59, BK61, Kaz61a] Nagy [dSN39],
Reshetnyak [Res57]

Wegner [Weg93] §3.6 | Kaluza [Kal81]

Griinbaum [Grii95] §3.7 | all of above

Toussaint [Tou99, Tou05] §3.8 | all of above

Demaine, Gassend, O’'Rourke, Toussaint 2008
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Reference Genesis Flaws, omissions, comments
Nagy [dSN39] §3.1 | Erdés [Erd35] Flawed: C* ¢ P**1,
Reshetnyak [Res57] §3.2 | independent” Correct though somewhat imprecise.
Yusupov [Yus57] §3.3 | independent” Flawed: P* might have pockets,
and only some vertices might flatten.
Bing & Kazarinoff §3.4 | Erdés [Erd35], Correct though somewhat terse.
[KB59, BK61, Kaz61a] Nagy [dSN39], Claims Nagy’s proof is incorrect.
Reshetnyak [Res57] | False conjecture: 2n flips suffice.
Wegner [Weg93] §3.6 | Kaluza [Kal81] Flawed: Area increase can be small.
Griinbaum [Grii95] §3.7 | all of above Omission: Why P” is convex.

Toussaint [Tou99, Tou05] §3.8

all of above

Based on Nagy’s argument.
Requires specific flip sequence.

Flawed: P* might have pockets.
Based on Nagy’s argument.

Demaine, Gassend, O’'Rourke, Toussaint 2008
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[

2 " IlokasatenbcTBO 9TOM Teopemb!, nanxoe B. Cexedanbeu-Hanem [cwm.
B.Sz.-Nady, Amer. Math. Monthly 46, 1939, c1p. 176—177], nesepno.

“The proof of this theorem, given by B. Sz. Nagy, is incorrect”

!

Reference Genesis Flaws, omissions, comments
Nagy [dSN39] §3.1 | Erdés [Erd35] Flawed: C* ¢ P**1,
Reshetnyak [Res57] §3.2 | independent® Correct though somewhat imprecise.
Yusupov [Yus57] §3.3 | independent® Flawed: P* might have pockets,
and only some vertices might flatten.
Bing & Kazarinoff §3.4 | Erdés [Erd35], Correct though somewhat terse.
[KB59, BK61, Kaz61a] Nagy [dSN39], Claims Nagy’s proof is incorrect.
Reshetnyak [Res57] | False conjecture: 2n flips suffice.
Wegner [Weg93] §3.6 | Kaluza [Kal81] Flawed: Area increase can be small.
Griinbaum [Grii95] §3.7 | all of above Omission: Why P” is convex.

Toussaint [Tou99, Toh05] §3.8

all of above

Based on Nagy’s argument.
Requires specific flip sequence.

Flawed: P* might have pockets.
Based on Nagy’s argument.

“Bing and Kazarinoff remark that Nagy's proof is invalid,

but there is no basis for this claim.”

Demaine, Gassend, O’'Rourke, Toussaint 2008
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de Sz. Nagy 1939

SOLUTIONS

3763 [1935, 627]|. Proposed by Paul Erdiss, The University, Manchester, Eng-
land.

Given any simple polygon P which is not convex, draw the smallest convex
polygon P! which contains P. This convex polygon P’ will contain the area P
and certain additional areas. Reflect each of these additional areas with respect
to the corresponding added side, thus obtaining a new polygon Py. If Py is not
convex, repeat the process, obtaining a polygon Py Prove that after a finite
number of such steps a polygon P, will be obtained which will be convex.

Solution by Béla de Sz. Nagy, Szeged, Hungary.
The process described in the above problem, i.e., the reflection of all addi-
tional areas, does not always lead from a simple polygon to a simple one, as
shown in the following example:

-

————m mm————— %

N

v

This means that the repeating of this process is not always possible.

In order to avoid this difficulty we modify the process in the following way.
Instead of reflecting oll additional areas mentioned in the problem we reflect
only one of them, so obtaining obviously always a simple polygon again. We
agree to define the process also for convex polygons as the process of leaving
them invariant.

Let A®, A#, - - -, A2 be the vertices of the given simple polygon P'. Apply-
ing the process # times leads to a polygon P», the points 4! (»=1,2, - - -, g)
being carried thereby into the points 4,*. Let us denote by C* the least convex
polygon containing P in its interior. Each polygon in the sequence P, C°, P!,
C', P2, C* - - - contains obviously the foregoing ones in its interior. The lengths
of all polygons P* being plainly the same, there is a circle containing all P™’s in
its interior. This implies that the sequence of the points 4,* (n=0,1,2,--)
has at least one point of accumulation,

It follows readily from the nature of the above process that if B is a point
on, or inside of, P~ then dist (B, 4») =dist (8, 4,*") for nZm. Especially we

have: dist (4,®, A.) =dist (4., A for nZm. From this it follows that the

sequence of the points 47 (=0, 1, 2, - - + ) may have only a single point of
accumulation. It is thus convergent: 42—, for n— =,
The polygon P= (4,44, Asds - - -, Ay1d,, A,44), being the limit of the se-

quence P*, is also the limit of the sequence C" and is therefore convex.

Denote by c.(r) the interior of the circle of radius r drawn around 4, as cen-
ter.

Let A, be a convexity-point of P (i.e.,such that A,,, 4,, A,y do not lie on
the same straight line; 4, being denoted also as 4y, 4: as 4,4;). We may find
then obviously a straight line L and a positive number p such that ¢,(p) lies
wholly on one side of L while all ax(p) (A#£y) lie on the other side. For m = nq(u)
we shall certainly have: A7 ec,(p) for v=1,2, - - - ,o. L separates thus 4 from
the other points 4;* (A=%p). Hence 4,* is a convexity-point of P~ It must be
therefore invariant: 4+t =4, This implies that for nZ=ng(u): dae(p)=4,".
Sois A=A, for n = ng(p).

Let now Ay, 4,,, - - -, A,, be all the convexity-points of P. We have then
AuN¥=4, (r=1,2, - -, s) for N=max (mo(p), nolpa), - + +, mal)).

This involves that C¥ =P and therefore also that P*= P for n = N. We thus
obtain after a finite number of steps a convex polygon indeed.
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3763 [1935, 627]|. Proposed by Paul Erdiss, The University, Manchester, Eng-
land.

Given any simple polygon P which is not convex, draw the smallest convex
polygon P! which contains P. This convex polygon P’ will contain the area P
and certain additional areas. Reflect each of these additional areas with respect
to the corresponding added side, thus obtaining a new polygon Py. If Py is not
convex, repeat the process, obtaining a polygon Py Prove that after a finite
number of such steps a polygon P, will be obtained which will be convex.

Solution by Béla de Sz. Nagy, Szeged, Hungary.

The process described in the above problem, i.e., the reflection of all addi-
tional areas, does not always lead from a simple polygon to a simple one, as
shown in the following example:
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polygon containing P* in its interior. Each polygon in the sequence P (C° P!,
Cl, P2, C?, - - - contains obviously the foregoing ones in its interior. [he lengths

de Sz. Nagy 1939

them invariant. .
Let A?, A®, - - - | A2 be the vertices of the given simple polygon P". Apply—:
ing the process # times leads to a polygon P», the points 42 (»=1,2, - - -, g)e

being carried thereby into the points 4.°. Let us denote by C* the least convex M

polygon containing P in its interior. Each polygon in the sequence P, C°, P!,
C', P2, C* - - - contains obviously the foregoing ones in its interior. The lengths

of all polygons F* being plainly the same, there 15 a circle containing all P*'s in
its interior. This implies that the sequence of the points 4,* (n=0,1,2,--)
has at least one point of accumulation,

It follows readily from the nature of the above process that if B is a point
on, or inside of, P~ then dist (B, 4») =dist (8, 4,*") for nZm. Especially we

have: dist (4,®, A.) =dist (4., A for nZm. From this it follows that the

sequence of the points 47 (=0, 1, 2, - - + ) may have only a single point of
accumulation. It is thus convergent: 42—, for n— =,
The polygon P= (4,44, Asds - - -, Ay1d,, A,44), being the limit of the se-

quence P*, is also the limit of the sequence C" and is therefore convex.

Denote by c.(r) the interior of the circle of radius r drawn around 4, as cen-
ter.

Let A, be a convexity-point of P (i.e.,such that A,,, 4,, A,y do not lie on
the same straight line; 4, being denoted also as 4y, 4: as 4,4;). We may find
then obviously a straight line L and a positive number p such that ¢,(p) lies
wholly on one side of L while all ax(p) (A#£y) lie on the other side. For m = nq(u)
we shall certainly have: A7 ec,(p) for v=1,2, - - - ,o. L separates thus 4 from
the other points 4;* (A=%p). Hence 4,* is a convexity-point of P~ It must be
therefore invariant: 4+t =4, This implies that for nZ=ng(u): dae(p)=4,".
Sois A=A, for n = ng(p).

Let now Ay, 4,,, - - -, A,, be all the convexity-points of P. We have then
AuN¥=4, (r=1,2, - -, s) for N=max (mo(p), nolpa), - + +, mal)).

This involves that C¥ =P and therefore also that P*= P for n = N. We thus
obtain after a finite number of steps a convex polygon indeed.
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