With the energy method, we relax our expansive condition. That doesn't seem like such a concession — why were we so concerned with expansivity in the first place? Was it just a convenient condition to ensure no selfintersection?

For the energy decreasing algorithm, how do we know that when following the gradient we aren't finding just a local minimum that isn't fully unfolded? (presumably this is what would happen if we tried to apply the algorithm to some locked 2D trees)

Really interested in pointed pseudotriangulations [...]

Ray Shooting in Polygons Using Geodesic Triangulations¹

B. Chazelle,² H. Edelsbrunner,³ M. Grigni,⁴ L. Guibas,^{5,6,7} J. Hershberger,⁵ M. Sharir,^{8,9} and J. Snoeyink⁷

[Chazelle, Edelsbrunner, Grigni, Guibas, Hershberger, Sharir, Snoeyink 1994]

[Haas, Orden, Rote, Santos, Servatius, Servatius, Souvaine, Streinu, Whiteley 2005]

Expansive Motions and the Polytope of Pointed Pseudo-Triangulations

[Rote, Santos, Streinu 2002]

Have any of the open problems been solved?

[Ballinger, Charlton, Demaine, Demaine, Iacono, Liu, Poon 2009]

Folding Equilateral Plane Graphs

Zachary Abel¹, Erik D. Demaine², Martin L. Demaine², Sarah Eisenstat², Jayson Lynch², Tao B. Schardl², and Isaac Shapiro-Ellowitz³

[Abel, Demaine, Demaine, Eisenstat, Lynch, Schardl, Shapiro-Ellowitz 2011]

I'd like a little more intuition on why 4D is so radically different than 3D for locked linkages.

[Cocan & O'Rourke 2001]