Pebble algorithm: [Jacobs & Hendrickson 1997]

1. Test 2k property: every k vertices induce \(\leq 2k \) edges
 - each vertex has 2 attached pebbles
 - each pebble can cover 1 incident edge
 - free if not used to cover
 - goal: cover every edge

Claim: 2k property \(\iff \) pebble cover

Proof:
\((\implies) \) edges induced by k vertices must be covered by 2k pebbles of those vertices
\(\implies \leq 2k \) induced edges

\((\impliedby) \) by correctness of algorithm below:
 - no pebble cover
 - algorithm below will fail
 - find vertex set violating 2k property

\[\square \]
Algorithm:
- add edges one at a time
- view covered edge as directed from pebble
- for each added edge \(vw \):
 - search for directed path from \(v \) or \(w \) to free pebble
 - if found: shift pebbles (reverse edge)
- else: nodes reachable from \(v \) & \(w \) violate \(2k \) property

Proof: no outgoing edges
 \(\Rightarrow \) pebbles cover induced edges except \(vw \)
 \(\Rightarrow >2k \) edges among \(k \) vertices

Running time: \(O(V+E) \) per search
 \(\cdot O(V) \) searches
 \(= O(V^2 + VE) \)

\(\text{\(\downarrow \)} \) just check whether \(E \geq 2V \) at start
 \(\Rightarrow \) return \text{NO} \)
(2) test 2k-3 property (Laman condition)

Claim: G has 2k-3 property
\[\Leftrightarrow G + 3e \text{ has 2k property} \]
add 3 copies of e for every edge e in G

Proof: consider k vertices.
\[(\Rightarrow) \quad \leq 2k-3 \text{ induced edges} \]
if e among them:

\[G + 3e \text{ induces } \leq 2k \text{ edges} \]
else: still $\leq 2k-3 < 2k$ edges

\[(\Leftarrow) \quad \text{if no induced edges: done} \]
else: add 3 copies of induced edge results in $\leq 2k$ induced edges
remove 3 extra copies
\[\Rightarrow \leq 2k-3 \text{ induced edges} \]

$O(V^3)$ algorithm: call previous on $G + 3e \forall e$

$O(V^2)$ algorithm: incremental as above
- for each added edge e:
 - add 4 copies of e as above
 - if succeed: remove 3 copies of e (freeing 3 pebbles)
 - if fail: remove all 4 copies of e
 mark edge as redundant
- gen. rigid $\Leftrightarrow 2n-3$ nonredundant edges
Implementation [Audrey Lee]

Generalization to a k-b property [Lee & Streinu - Discr. Math. 2008]

Rigid component decomposition: [above paper + Lee, Streinu, Theran - CCCG 2005]
roughly, component = what you can reach, including backward edges if reachable component on other side has no free pebbles

Body & bar frameworks:
- generically rigid in d-D
- graph has ak-a property
 where $a = \frac{d(d+1)}{2} = 6$ in 3D
 [Tay 1984 + Nash-Williams/Tutte (indep.)]
- can also support hinges (3D):
 equivalent to 5 bars

Angular rigidity: [Lee-St. John & Streinu - CCCG 2009]
- lines/planes & angles: angles min. gen. rigid
 \iff constraint graph is Laman in 3D
- bodies & angles: angles gen. rigid in 3D
 \iff constraint graph has 3k-3 property
- 5-connected double bananas: \[\text{Mantler & Snoeyink - 2004}\]

- in fact, any graph can be made 5-connected while preserving Laman & generic flexibility
- just add spiders: