Fold & cut software
- **DEMO** (6.849 project)
- **PROJECT**: improve UI, make Java applet;
 port to JavaScript;
 force degeneracies; or
 compute folded state & ψ/unfold
- **JOriGami**: disks
 [Silveira, Cosentino, Coelho, Aoki]

Odd-degree vertices?
- even degree \iff face 2-colorable
 \iff alternating above/below side assignment
 \iff uncresed cut edges
 \iff scissor cuts
 (separate material on both sides of line)
- mathematical/laser cuts (removing line)
 can do odd-degree vertices
 e.g.

- if graph doesn't disconnect from the removal of any 1 edge
 (planar 2-edge-connected)
then = union of two even graphs

[Demaine, Demaine, Luby 1998,
thanks to Jim Geelen & Dan Younger]
- **Linear corridors** → tree
 - corridor → edge (or ray)
 - width w → length w
 - perpendicular (connected comp) → vertex
 - similar to TreeMaker CP → shadow tree

- **Tree folding** → origami folding
 - expand each edge to accordion folding
 - stitch together at perpendiculars

- **Irrational ratio** happens with prob. 1? **YES**
 - but first need closed loop of perpendiculars
 - **CONJECTURE**: with prob. 1, only get loops around one cut vertex (normal circular corridor)

- Examples: students & HELL

- **Disk packing** → tri/quad decomposition
 - disk center → vertex
 - kissing disks → edge
 - 3- or 4-gap → triangle or quad.
How many disks? \(O(\int_{x \in \mathcal{P}} \frac{dx}{lfs(x)}) \)

- \(lfs(x) = \frac{\text{local feature size}}{\text{radius of smallest disk centered at } x} \)
 hitting a nonincident edge of \(\mathcal{P} \)

Disk packing method vs. tree method
- disks
- easy to place \((\text{but many})\)
- input = polygon
- regions = tri. & quad.
- both align boundaries of universal molecules

- disks & rivers
- hard to place
- input = tree
- regions = convex \((\text{tri.})\)

Straight skeleton method vs. tree method
- arbitrary polygons/graphs
- no control on tree/lengths
- polygon packing \(\approx\) combination of two
 \((\text{straight skeleton} + \text{gussets to control})\)

[Demaine, Demaine, Lang] [Origami Design Secrets 2e]

\[\text{OPEN: fold flat & cut of fixed curvature } K \]
- make all unions of arcs of this curvature?
- intuition: \(\frac{1}{x} \)
- but:
- Flattening
 - 3D fold & cut \Rightarrow flat folded state (folding motions not preserved)
 - NEW: convex polyhedra can be **continuously flattened** [Itoh, Nara, Vilcu 2011]
 - **PROJECT**: animate their motion
 - **OPEN**: nonconvex polyhedra?

- **PROJECT**: fold & cut alphabet
 - e.g. 3 or 4 simple folds/letter or CP for entire word/page

- **PROJECT**: paper cutting art via fold & cut
 - (à la Peter Callesen)