• Box pleating history
 - Mooser's train [Raymond McLain, 1967]
 - Black Forest Cuckoo Clock [Lang 1987]

• OPEN: universal folding of e.g. polytetrahedra or polyoctahedra from triangular grid?

• Maze folding examples
 - our print designs
- Meaning of NP-hardness:
 - doesn't mean anything about specific instances
 - about scaling of running time as problem size n grows
 - e.g. 8×8 Chess is "trivial"
 $n \times n$ Chess is EXP-hard
 \Rightarrow running time scales exponentially

- Simple fold hardness review:
 - convert Partition instance $(a_1, a_2, ..., a_n)$
 into equivalent simple-fold instance (polygon + creases)
 \Rightarrow solution for Partition exists
 \Leftrightarrow solution for simple folds exists

\Leftarrow) vertical creases will bind otherwise

\Rightarrow) fold creases between a_i & a_{i+1}
 when in different halves
 fold both vertical creases
 fold rest
- Flat foldability hardness review:
 - convert NAE triples into crease pattern

(\iff) gadgets force NAE constraints
 read T/F assignment off N/V assignment

(\implies) verify gadgets do fold as needed
 patch together (glue) foldings together

\textbf{OPEN}: simpler proof? \quad [Tom Hull]

- NP-hardness even given N/V assignment:
 [Bern & Hayes 1996]
Map folding: (non-simple folds, unlike \(L_2 \))
- horizontal & vertical creases in rectangular paper
- given N/V assignment, does it fold flat?
- OPEN: polynomial? NP-hard?
 [posed by Edmonds 1997]

2\(\times\)n has polynomial-time algorithm
 [Demaine, Liu, Morgan 2012]
 (from 6.849 project in 2010)
- NEWS labeling: for each vertex, mark which emanating crease is different

- top edge view: top of folded map
 = N & S sides of unfolded map
- nested pairings from map spine
- N = left turn \(\uparrow \)
- S = right turn \(\downarrow \)
- E = “in” \(\rightarrow \)
- W = “out” \(\leftarrow \)
- ray diagram: [Charlton & Zhou, 6.849, 2007]
- follow map spine (merging N & S sides)
- y coord. = "nesting depth"; x coord. flexible
- E = down turn \Rightarrow; W = up turn \Leftarrow
- N & S shoot downward rays \downarrow \rightarrow \downarrow
- rules: (equivalent to flat folding)
 - spine doesn't self-intersect
 - N rays must hit N rays or go to ∞
 - S rays ditto
- constrained spine segment (with no view to infinity below it)
 - have equal number of N & S vertices below it

- spaces between spine in ray diagram forms a tree structure
- "guess" this tree structure (effectively trying them all) using dynamic programming