- Origamizer folding exercise

Tips:
- Rhino's Face3D + Join + Weld (180) FTW
- export OBJ as Polygon Mesh
- turn on Angle Condition

- Convex vs. nonconvex vertices

\[3 \cdot 60^\circ = 180^\circ \]
\[6 \cdot 90^\circ = 540^\circ \]
\[\sum_{i} \Theta_i \leq 360^\circ \quad \sum_{i} \Theta_i > 360^\circ \]

- DEMO of \(\theta \) in Origamizer

- Freeform Origami DEMO
- Geometric constraints:
 - Rigid Origami Simulator
 (parameterized by fold angle)
 - closure around a vertex
 - Freeform Origami
 (parameterized by 3D vertex coordinates)
 - developability
 - flat foldability
 - Origamizer
 - w/ a variable setup
 - closure around a vertex
 - convexity of paper boundary
 - convexity of edge-tucking molecule
 - tuck angle condition
 - tuck depth condition

- Solve these nonlinear constraints via sequence of linear systems to reduce error:
 1. Euler step to make infinitesimal motion satisfy constraints
 2. Newton step to correct 2nd order error
NP-completeness: what, me worry?
- local foldability seems to be enough for small rigid motions
- \textbf{OPEN:} theorem?
- amount of valid motion varies

Automatic folding:
- simple folding robot \cite{Balkcom&Mason2008}
- Printed Circuit MicroElectricalMechanical System (PC-MEMS)
 \cite{HarvardMicroroboticsLab2011}

Open problems in rigid origami?
- \textbf{OPEN:} complexity of deciding rigid foldability of a crease pattern?
 - degree-4 vertices \implies easy
 \cite{Demaine&Tachi2012}
- \textbf{OPEN:} design rigidly foldable origami (any interesting class)
- paper shopping bags
- \textbf{OPEN:} unfold from flat state with extra creases

\textbf{PROJECT:} port Tachi's software to MacOS

Multiple origami from subsets of 1 CP?
\rightarrow \textsc{Lecture 7}!