- Funny comments
- Positive comments
 "Such a powerful theorem, so quickly"

- Folding practice: numbers 6, 8, 4, 9!
 - cf. Jason Ku's universal alphabet & Jeannine Mosely's 4-fold alphabet
 - **PROJECT**: design 4-fold digits

- History: why "silhouette" & "gift wrapping"?

- **Practical?** strips occasional in origami
 - pretty good n x n checkerboard design (see L4)

- **Pseudopolynomial upper/lower bound?**
 \[\ell \text{ polynomial in } n = \# \text{ vertices} + \text{edges} + \text{faces} \]
 \[\leq 5(nr)^c \] & geometric ratio r
 - here, \(r = \frac{\text{max. diameter of face}}{\text{min. altitude of triangle}} \)
 & want to bound # folds & aspect ratio
 - upper bound claimed, but not explicit
 - \(O(nr) \)? \(O(n+r) \)?
 - presumably a lower bound e.g. \(\Omega(n+r) \)
0. **Seam placement**
 - Convex seam patterns all possible:
 - Visit seam polygons in a tour
 - Transition increases/decreases width of strip via log ratio width gadgets & offsets strip to "cover" next polygon
 - Some nonconvex possible:
 - OPEN: which?

0. **Hide gadget via simple folds?** (some layers)
 - Silhouette easy: valley fold, not mountain
 - OPEN: 2-color pattern?
 - Idea: bicolor turn gadget/excess
 - TRY TO SOLVE
 - OPEN: convex seam placement

Simple Folds: [Arkin, Bender, Demaine, Demaine, Mitchell, Sethia, Skiena, 2000/2004]

0. **Motivation:** Bending rigid material

0. **Definition:** Single line segment
 - $\pm 180^\circ$ rotation
 - No collision during motion
Example:

\[\begin{array}{c}
v \quad \text{crimp} \\
\downarrow \quad \text{V}
\end{array} \quad \text{is mingling (but not "forever")} \]

not left mingling

\[\begin{array}{c}
v \quad \text{mingling} \\
\downarrow \quad \text{V}
\end{array} \quad \text{not right mingling} \]

\[\Rightarrow \begin{array}{c}
v \quad \text{V} \\
\downarrow \quad \text{V}
\end{array} \quad \text{is not mingling} \]

& not flat foldable

Another:

\[\begin{array}{c}
v \quad \text{crimp} \\
\downarrow \quad \text{V}
\end{array} \quad \text{is mingling} \]

& flat foldable

\[\Rightarrow \begin{array}{c}
v \quad \text{V} \\
\downarrow \quad \text{V}
\end{array} \quad \text{is mingling} \]

& flat foldable

\[\Rightarrow \begin{array}{c}
v \quad \text{V} \\
\downarrow \quad \text{V}
\end{array} \quad \text{done} \]
Algorithm: (NEW) (covered in C3)
- search (left to right) for segment that's crimpable or end foldable
- if none found: STOP ~ not flat foldable
- else: do fold $x \rightarrow y \rightarrow z$
 merge segments $x, y, z \rightarrow x - y + z$
 go back one segment (left of x)
 continue search

Correctness:
- doing fold changes foldability only of adjacent segments
 \Rightarrow enough to back up 1 step

Running time: $O(n)$
- # right steps $= n + $ # left steps
 $= $ # folds done
 $\leq 2n$
 (amortization: charge left steps to fold just done)
0 Every mountain-valley pattern can be made flat foldable by adding creases:
 - between consecutive \(MM \)'s add \(V \)
 & between consecutive \(VV\)'s add \(M \)
 \(\Rightarrow \) alternating \(M/V \)
 \(\Rightarrow \) flat foldable
 (globally smallest segment is crimpable)

0 \(d \)-dimensional paper
 \(\Rightarrow \) \((d-1) \)-dimensional creases
 \& \((d+1) \)-dimensional ambient space
 \(- d \)-dimensional = flat folding