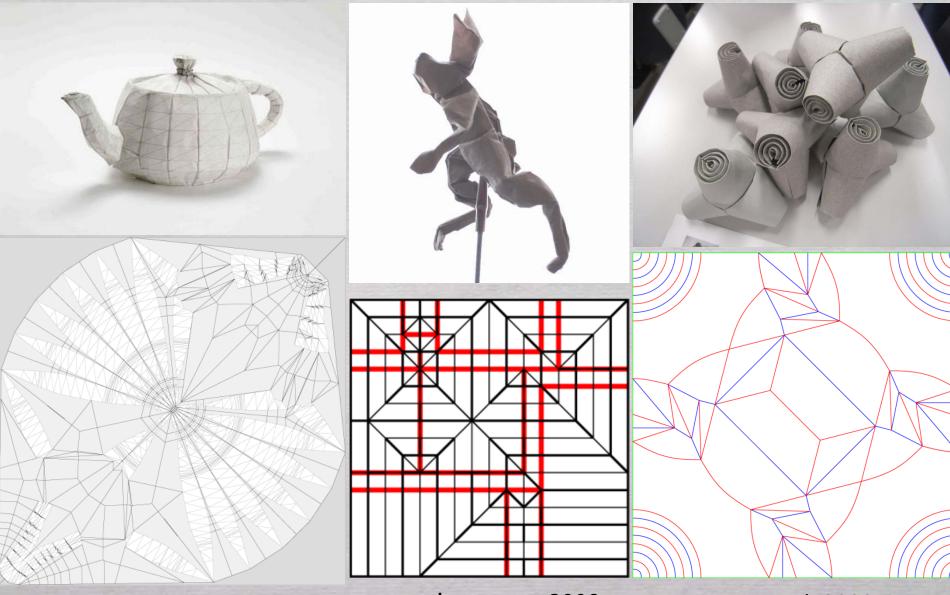
Architectural Origami

Architectural Form Design Systems based on Computational Origami

Tomohiro Tachi Graduate School of Arts and Sciences, The University of Tokyo JST PRESTO tachi@idea.c.u-tokyo.ac.jp

Introduction

Background 1: Origami



Origami Teapot 2007 Tomohiro Tachi Running Hare 2008 Tomohiro Tachi Tetrapod 2009 Tomohiro Tachi

Background 2: Applied Origami

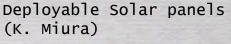
- Static:
 - Manufacturing
 - Forming a sheet
 - No Cut / No Stretch
 - No assembly
 - Structural Stiffness
- Dynamic:
 - Deployable structure
 - Mechanism
 - Packaging
 - Elastic Plastic Property
 - Textured Material
 - Energy Absorption
- Continuous surface

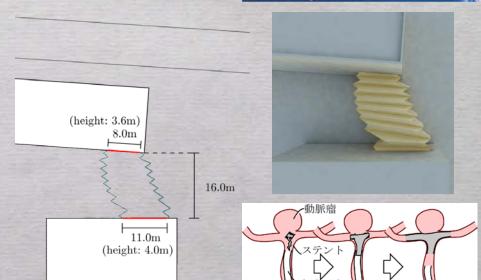
Potentially useful for

- Adaptive Environment
- Context Customized Design
- Personal Design
- Fabrication Oriented Design

Table (T. Tachi and D. Koschitz)

Dome (Ron Resch)



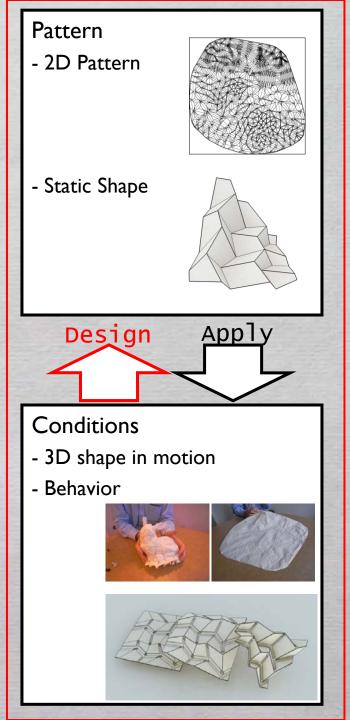


Architectural Origami

- Origami Architecture Direct application of Origami for Design
 - Design is highly restricted by the symmetry of the original pattern
 - Freeform design results in losing important property (origami-inspired design)

• Architectural Origami Origami theory for Design

- Extract characteristics of origami
- Obtain solution space of forms from the required condition and design context



Outline

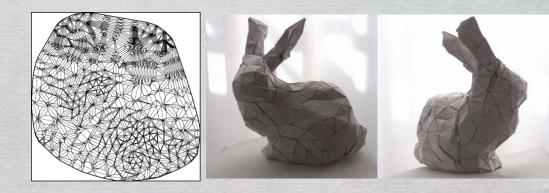
I. Origamizer

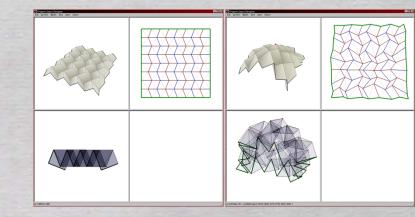
tucking moleculeslayout algorithm

- 2. Freeform Origami
 - constraints of origami
 - perturbation based calculationmesh modification
- 3. Rigid Origami

simulation

- design by triangular mesh
- design by quad meshnon-disk?





Origamizer

Related Papers:

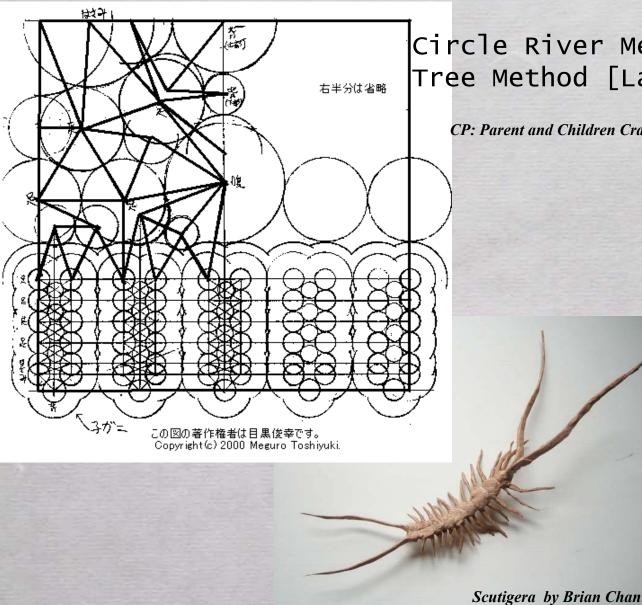
•Demaine, E. and Tachi, T. "Origamizer: A Practical Algorithm for Folding Any Polyhedron," work in progress.

•Tachi, T., "Origamizing polyhedral surfaces," IEEE Transactions on Visualization and Computer Graphics, vol. 16, no. 2, 2010.

•Tachi, T., "Origamizing 3d surface by symmetry constraints," August 2007. ACM SIGGRAPH 2007 Posters.

•Tachi, T., "3D Origami Design based on Tucking Molecule," in Origami4: A K Peters Ltd., pp. 259-272, 2009.

Existing Origami Design Method by Circle Packing



Circle River Method [Meguro 1992] Tree Method [Lang 1994]

CP: Parent and Children Crabs by Toshiyuki Meguro

1D vs. 3D

- Circle River Method / Tree Method
 - Works fine for tree-like objects
 - Does not fit to 3D objects

- Origamizer / Freeform Origami
 - 3D Polyhedron, surface approximation
 - What You See Is What You Fold

3D Origami

Ŵ

ZUIIII

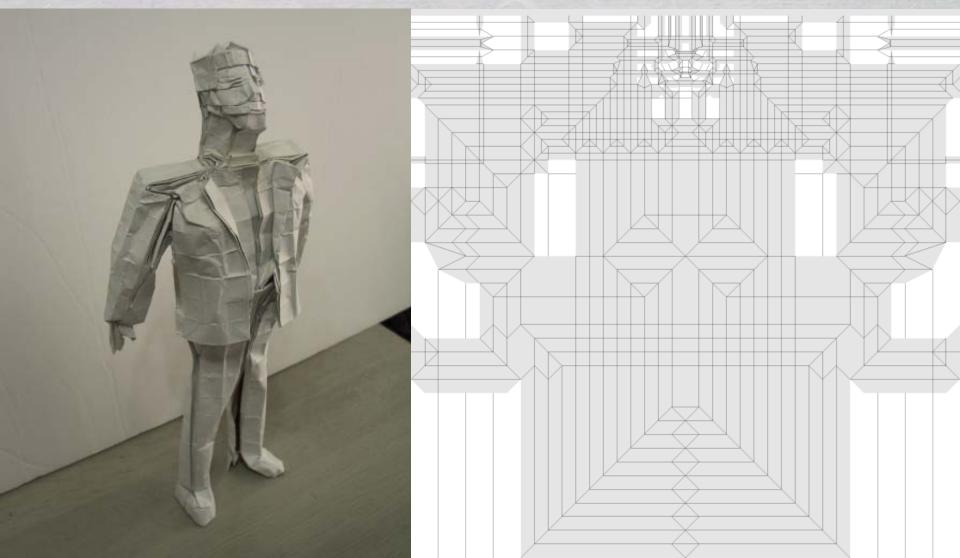
 A A A

XA

Laptop PC 2003 by Tomohiro Tachi not completed

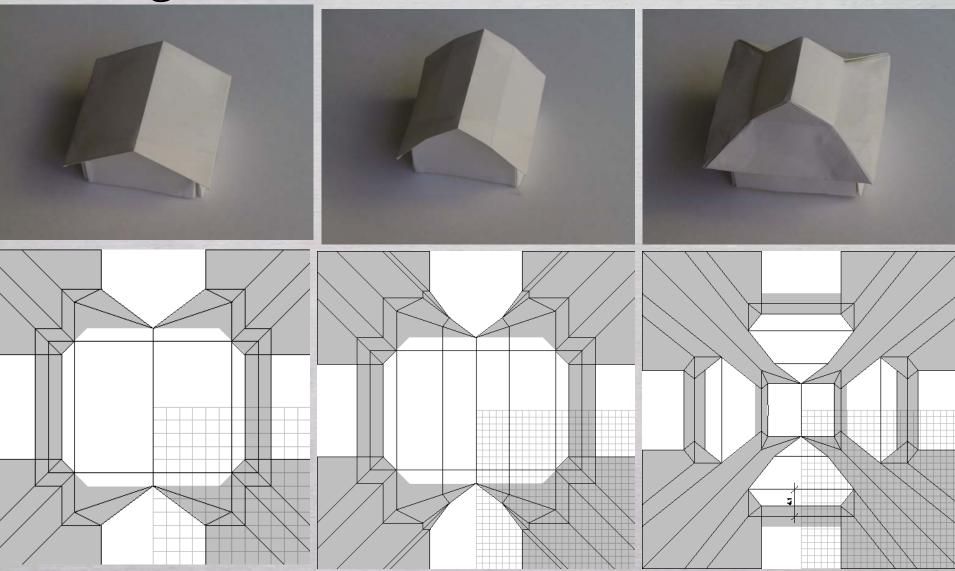
3D Origami

Human 2004



3D Origami

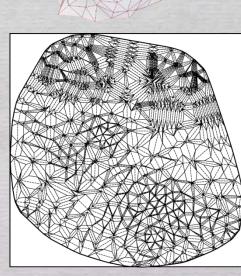
Roofs 2003



Everything seems to be possible!

Problem: realize arbitrary polyhedral surface with a developable surface

- Geometric Constraints
 - Developable Surf
 - Piecewise Linear
 - Forget about Continuous
 Folding Motion
- Potential Application
 - Fabrication by folding and bending

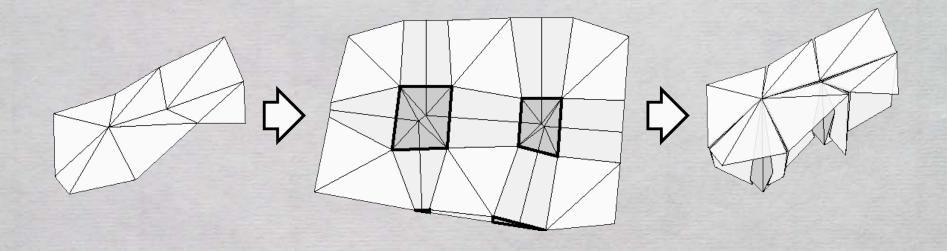


Input: Arbitrary Polyhedron

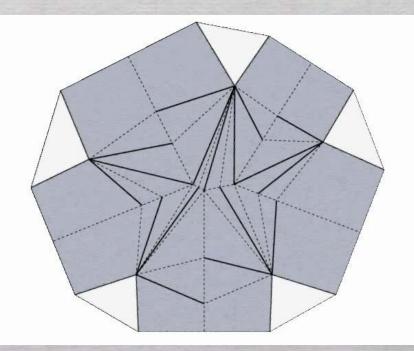
Output: Crease Pattern

Folded Polyhedron

Approach: Make "Tuck"



- Tuck develops into
 - a plane
- Tuck folds into
 - a flat state hidden behind polyhedral surface
- →Important Advantage: We can make Negative Curvature Vertex

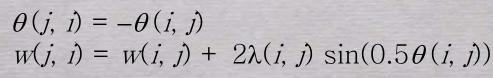


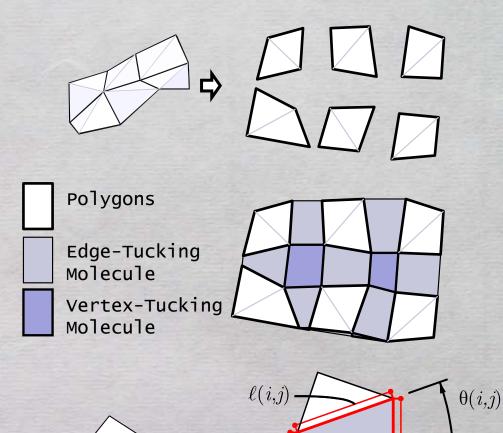
Basic Idea

Origamize Problem ↓ Lay-outing Surface Polygons Properly ↓ Tessellating Surface Polygons and "Tucking Molecules"

Parameter everything by Tucking Molecule:

- Angle $\theta(i, j)$
- Distance W(i, j)





w(i,j)

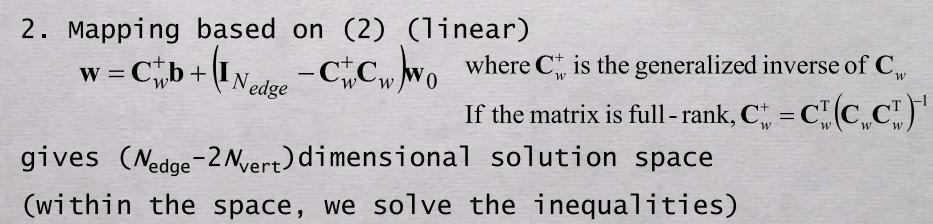
w(j,i)

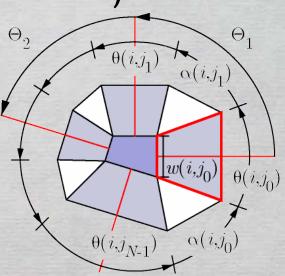
Geometric Constraints (Equations)

$$\sum_{n=0}^{N-1} \theta(i, j_n) = 2\pi - \sum_{n=0}^{N-1} \alpha(i, j_n) \qquad \cdots (1)$$
$$\sum_{n=0}^{N-1} w(i, j_n) \begin{bmatrix} \cos\left(\sum_{m=1}^n \Theta_m\right) \\ \sin\left(\sum_{m=1}^n \Theta_m\right) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \qquad \cdots (2)$$

where $\Theta_m = \frac{1}{2}\theta(i, j_{m-1}) + \alpha(i, j_m) + \frac{1}{2}\theta(i, j_m)$

Two-Step Linear Mapping 1. Mapping based on (1) (linear) $C_w w = b$





Geometric Constraints (Inequalities) $\alpha(i,j_2)$

- 2D Cond.
 - Convex Paper

 $\theta(i,o) \ge \pi$ $w(i,o) \ge 0$

 $-\pi < \theta(i,j) < \pi$

 $\min(w(i,j),w(j,i)) \ge 0$

Non-intersection

 $0 \le \Theta_m < \pi$ Crease pattern non-intersection $\phi(i, j) \le \arctan \frac{2\ell(i, j) \cos \frac{1}{2} \theta(i, j)}{w(i, j) + w(j, i)} + 0.5\pi$

3D Cond.

•

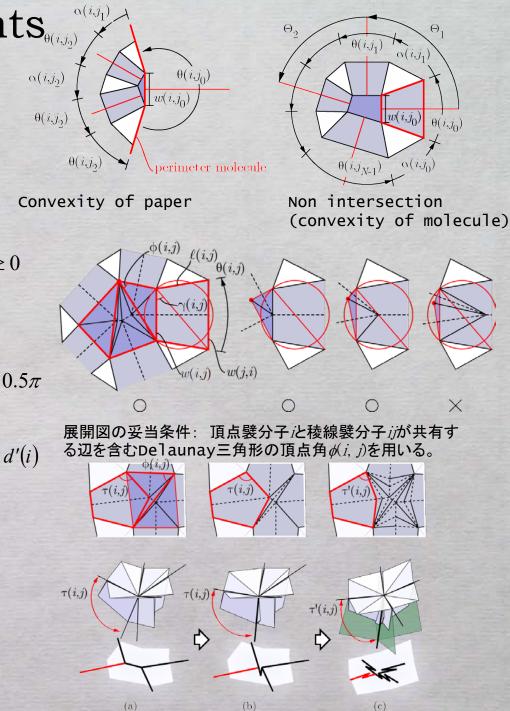
for tuck proxy angle $\tau'(a,r)$ depth

Tuck angle condition

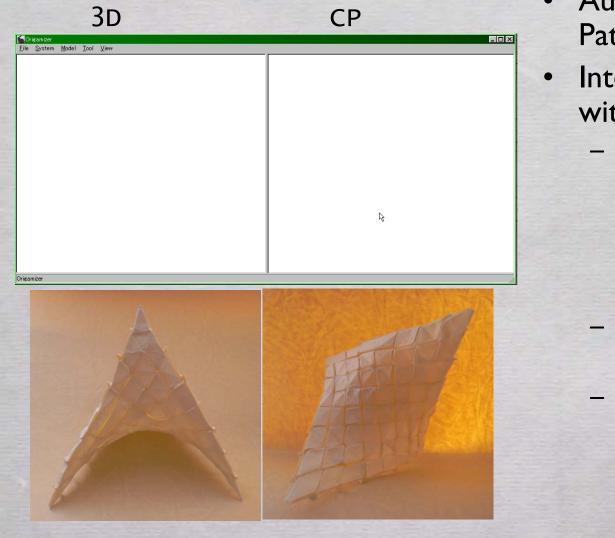
$$\phi(i,j) - \frac{1}{2}\theta(i,j) \le \pi - \tau'(i,j)$$

Tuck depth condition

$$w(i,j) \le 2\sin\left(\tau'(i,j) - \frac{1}{2}\alpha(i,j)\right) d'(i)$$

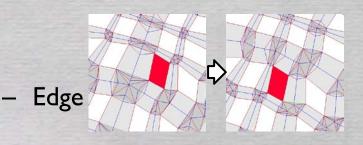


Design System: Origamizer

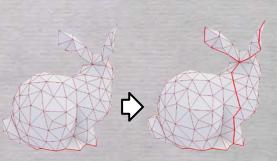


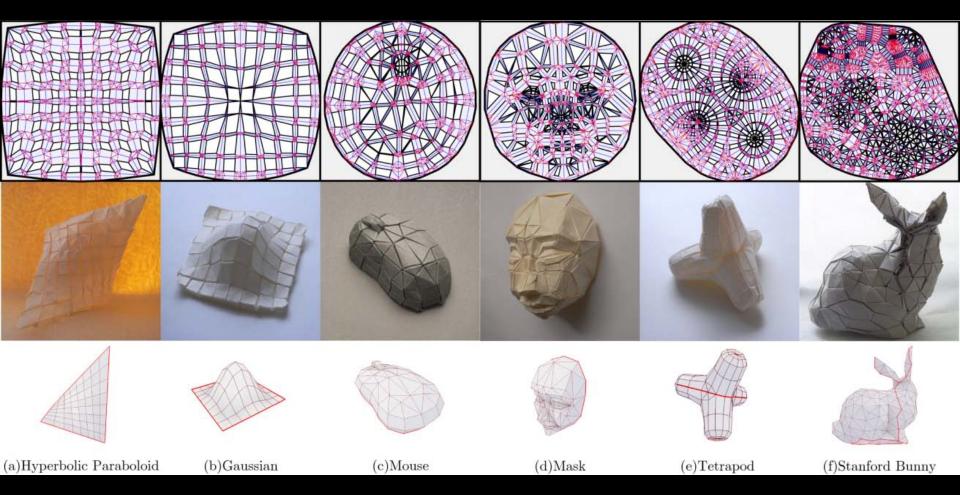
Developed in the project "3D Origami Design Tool" of IPA ESPer Project

- Auto Generation of Crease Pattern
- Interactive Editing (Search within the solution space)
 - Dragging Developed Facets

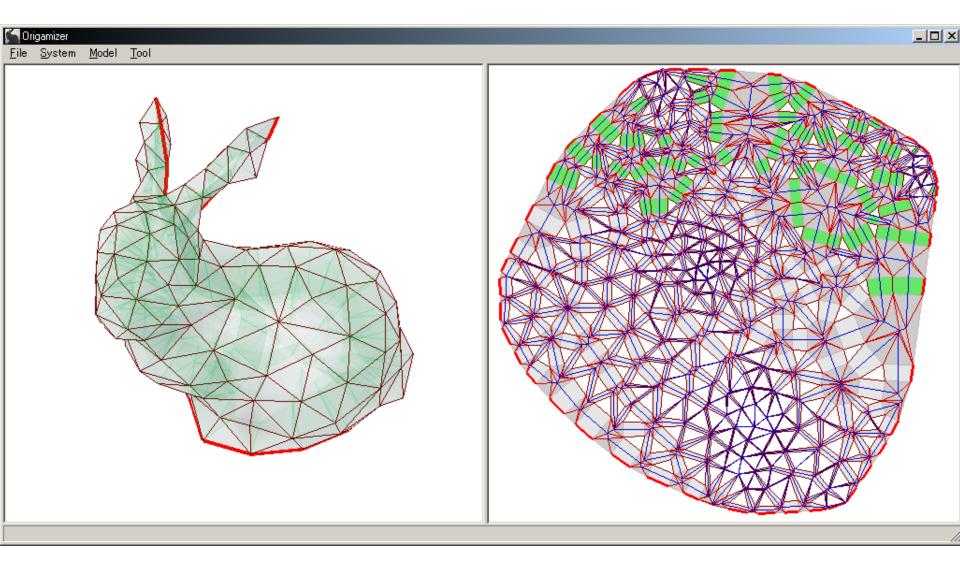


- Boundary Editing

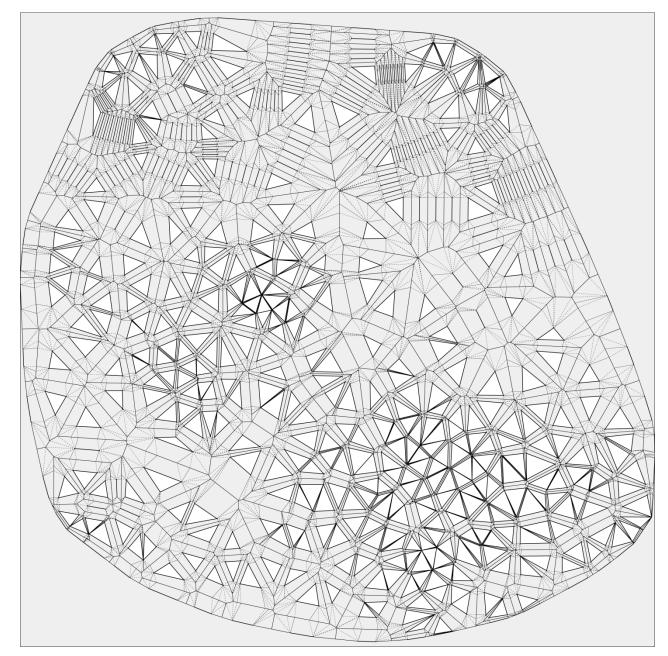




How to Fold Origami Bunny



0. Get a crease pattern using Origamizer

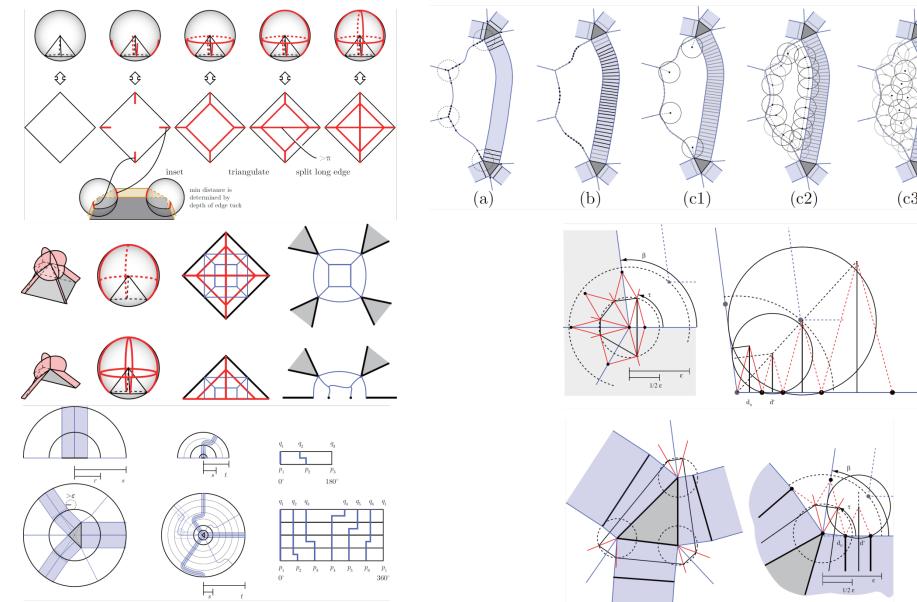


1. Fold Along the Crease Pattern

2. Done!

Proof?

Ongoing joint work with Erik Demaine



Freeform Origami

Related Papers:

Tomohiro Tachi, "Freeform Variations of Origami",
in Proceedings of The 14th International Conference
on Geometry and Graphics (ICGG 2010), Kyoto, Japan,
pp. 273-274, August 5-9, 2010.
(to appear in Journal for Geometry and Graphics
Vol. 14, No. 2)

•Tomohiro Tachi: "Smooth Origami Animation by Crease Line Adjustment ," ACM SIGGRAPH 2006 Posters, 2006.

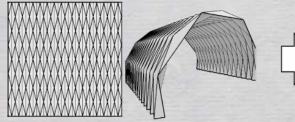
Objective of the Study

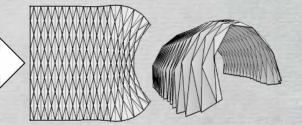
freeform

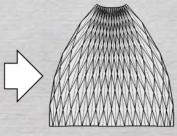
- Controlled 3D form
- Fit function, design context, preference, ...

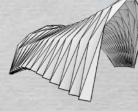
2. origami utilize the properties

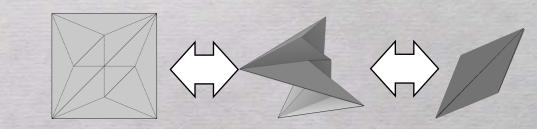
- Developability
 - → Manufacturing from a sheet material based on Folding, Bending
- Flat-foldability
 - → Folding into a compact configuration or Deployment from 2D to 3D
- Rigid-foldability
 - → Transformable Structure
- Elastic Properties





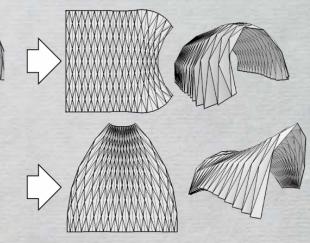


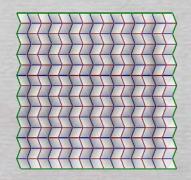


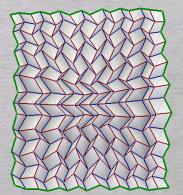


Proposing Approach

- Initial State: existing origami models (e.g. Miuraori, Ron Resch Pattern, ...)
 + Perturbation consistent with the origami conditions.
- Straightforward user interface.

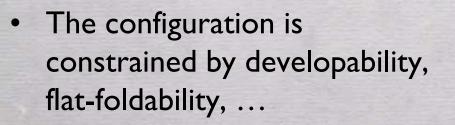


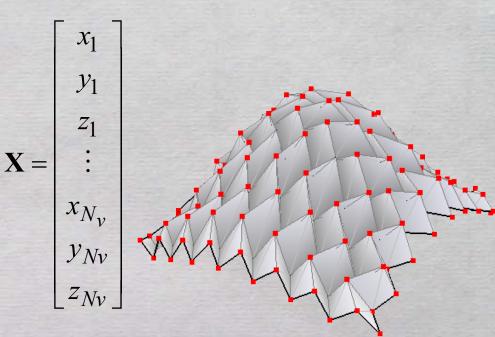




Model

- Triangular Mesh (triangulate quads)
- Vertex coordinates represent the configuration
 - $3N_v$ variables, where N_v is the # of vertices





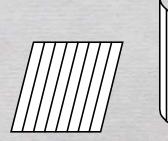
Developability

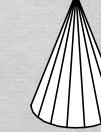
Engineering Interpretation

- → Manufacturing from a sheet material based on Folding, Bending
- Global condition
 - There exists an isometric map to a plane.
- \Leftrightarrow (if topological disk)
- Local condition
 - Every point satisfies
 - Gauss curvature = 0

Developable Surface

- Smooth Developable Surface
 - G² surface (curvature continuous)
 - "Developable Surface" (in a narrow sense)
 - Plane, Cylinder, Cone, Tangent surface
 - G¹ Surface (smooth, tangent continuous)
 - "Uncreased flat surface"
 - piecewise Plane, Cylinder, Cone, Tangent surface
- Origami
 - G⁰ Surface
 - piecewise G¹ Developable G⁰
 Surface



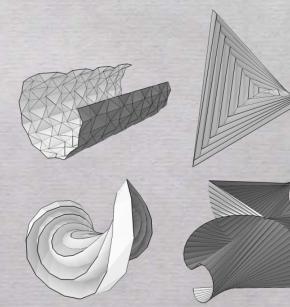


pl ane

cyl i nder

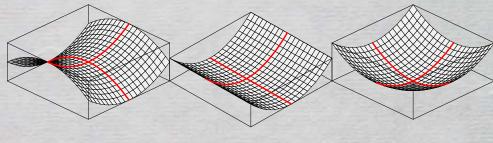
cone

tangent



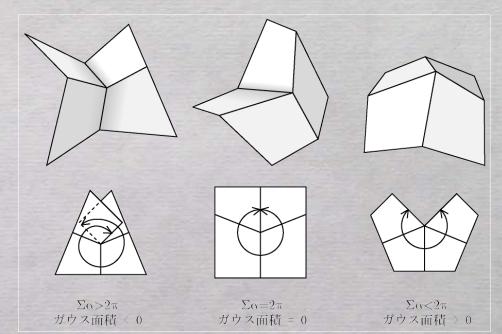
Developability condition to be used

- Constraints
 - For every interior vertex V $(k_v$ -degree), gauss area equals 0.



GC<0 GC=0 GC>0

$$\mathbf{G}_{v} = 2\pi - \sum_{i=0}^{kv} \theta_{i} = 0$$



Flat-foldability

Engineering Interpretation

- → Folding into a compact configuration or Deployment from 2D to 3D
- Isometry condition
 - isometric mapping with mirror reflection
- Layering condition
 - valid overlapping ordering
 - globally : NP Complete [Bern and Hayes 1996]

Flat-foldability condition to be used

Isometry

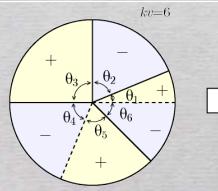
⇔ Alternating sum of angles is 0 [Kawasaki 1989]

$$\mathbf{F}_{v} = \sum_{i=0}^{kv} \operatorname{sgn}(i)\boldsymbol{\theta}_{i} = 0$$

- Layering
 - ⇒ [kawasaki 1989]
 - If θ_i is between foldlines assigned with MM or VV, $\ell_{i+2} \theta_i$

 $\theta_i \geq \min(\theta_{i-1}, \theta_{i+1})$

- + empirical condition [tachi 2007]
 - If θ_i and θ_{i+1} are composed byfoldlines assigned with MMV or VVM then, $\theta_i \ge \theta_{i+1}$

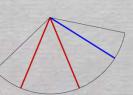


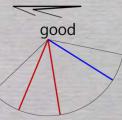
 θ_{i-1}

bad

good

bad





bad

Other Conditions

- Conditions for fold angles
 - Fold angles ρ
 - V fold: $0 < \rho < \pi$
 - M fold: $-\pi < \rho < 0$
 - crease: $-\alpha\pi < \rho < \alpha\pi$ (α =0:planar polygon)
- Optional Conditions
 - Fixed Boundary
 - Folded from a specific shape of paper
 - Rigid bars
 - Pinning

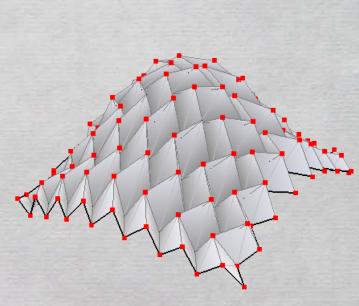
Settings

- Initial Figure:
 - Symmetric Pattern
- Freeform Deformation
 - Variables (3N_v)
 - Coordinates X
 - Constraints $(2N_{v_{in}}+N_c)$
 - Developability
 - Flat-foldability
 - Other Constraints

$$\mathbf{X} = \begin{vmatrix} y_1 \\ z_1 \\ \vdots \\ x_{N_v} \\ y_{Nv} \end{vmatrix}$$

 Z_{Nv}

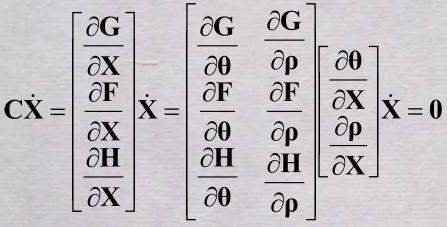
 x_1



^{nstraints} Under-determined System

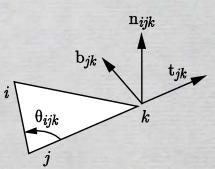
Solve Non-linear Equation

The infinitesimal motion satisfies:



For an arbitrarily given (through GUI) Infinitesimal Deformation ΔX_0

$$\Delta \mathbf{X} = -\mathbf{C}^{+}\mathbf{r} + \left(\mathbf{I}_{3N_{\nu}} - \mathbf{C}^{+}\mathbf{C}\right)\Delta \mathbf{X}_{0}$$



 $\partial \theta_{iik}$

$$\mathbf{G}_{v} = 2\pi - \sum_{i=0}^{kv} \theta_{i} = 0$$
$$\mathbf{F}_{v} = \sum_{i=0}^{kv} \operatorname{sgn}(i) \theta_{i} = 0$$

$$\frac{\partial \mathbf{x}_{i}}{\partial \mathbf{x}_{i}} = -\frac{\partial \mathbf{x}_{ij}}{\ell_{ij}} \mathbf{b}_{ij}^{T}$$
$$\frac{\partial \theta_{ijk}}{\partial \mathbf{x}_{j}} = \frac{1}{\ell_{ij}} \mathbf{b}_{ij}^{T} + \frac{1}{\ell_{jk}} \mathbf{b}_{jk}^{T}$$
$$\frac{\partial \theta_{ijk}}{\partial \mathbf{x}_{k}} = -\frac{1}{\ell_{jk}} \mathbf{b}_{jk}^{T}$$

1.т

Euler Integration ΔX_0 $-C^+C\Delta X_0$ r = r Calculated Trajectory r = 0Ideal Trajectory

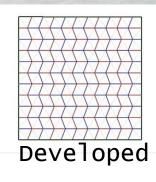
Freeform Origami

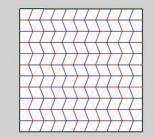
Get A Valid Value

- Iterative method to calculate the conditions
- Form finding through User
 Interface

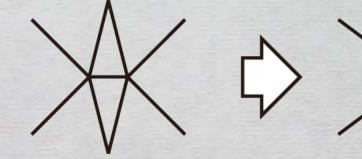
Implementation

- Lang
 - C++, STL
- Library
 - BLAS (intel MKL)
- Interface
 - wxWidgets, OpenGL
- To be available on web

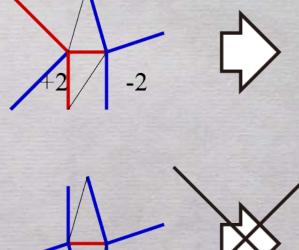




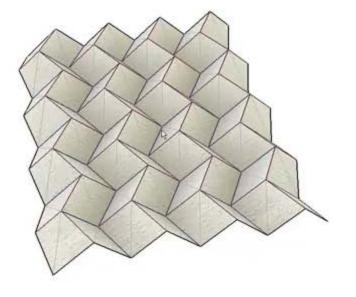
Mesh Modification Edge Collapse

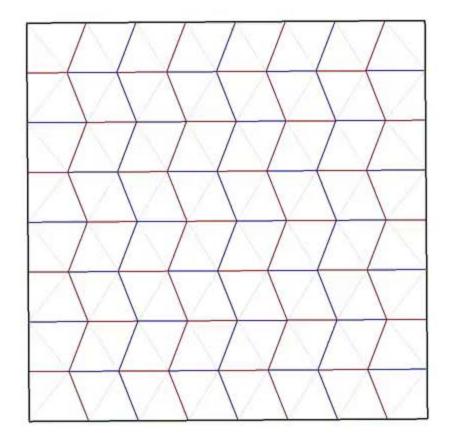


- Edge Collapse [Hoppe etal 1993]
- Maekawa's Theorem
 [1983] for flat foldable
 pattern
 - $M V = \pm 2$



Mesh Modification





Miura-Ori

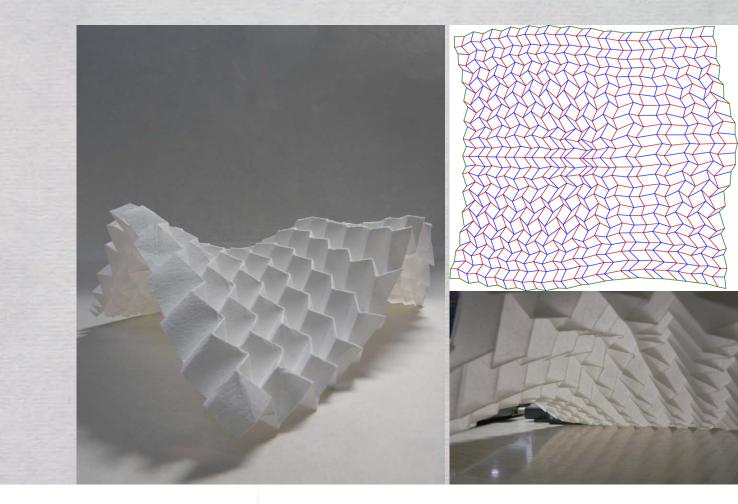
- Original
 - [Miura 1970]
- Application
 - bidirectionally expansible (one-DOF)
 - compact packaging
 - sandwich panel
- Conditions
 - Developable
 - Flat-foldable
 - op: (Planar quads)(→Rigid
 Foldable)

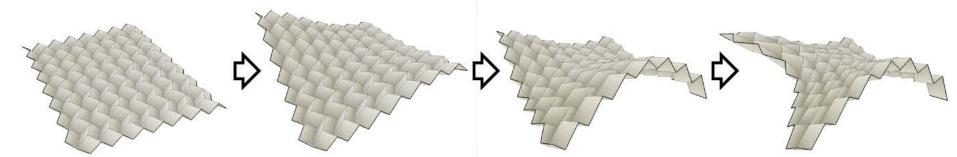
ISAS Space Flyer Unit

zeta core <u>[Korvo Miura 1</u>972]

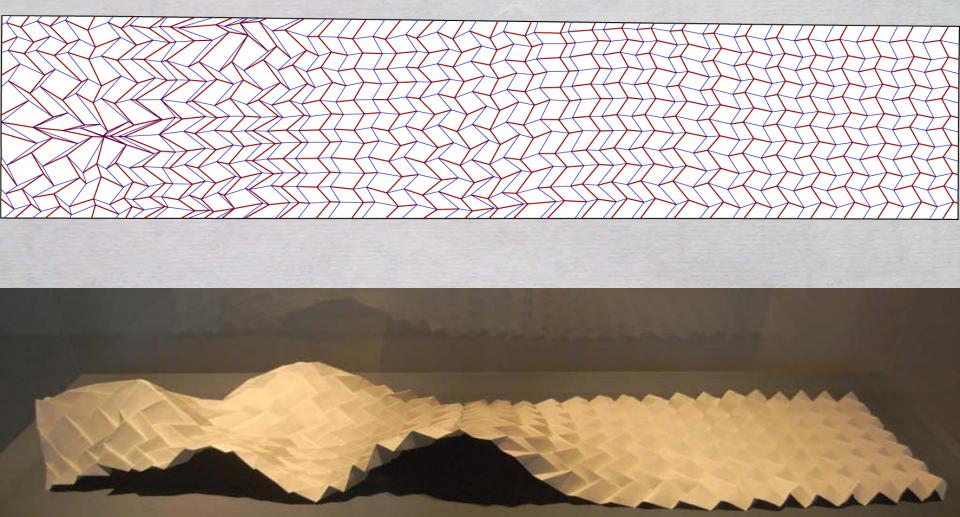
Miura-ori Generalized

• Freeform Miura-ori





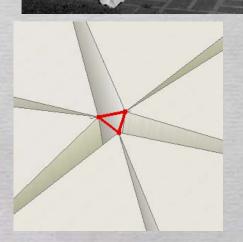
Miura-ori Generalized



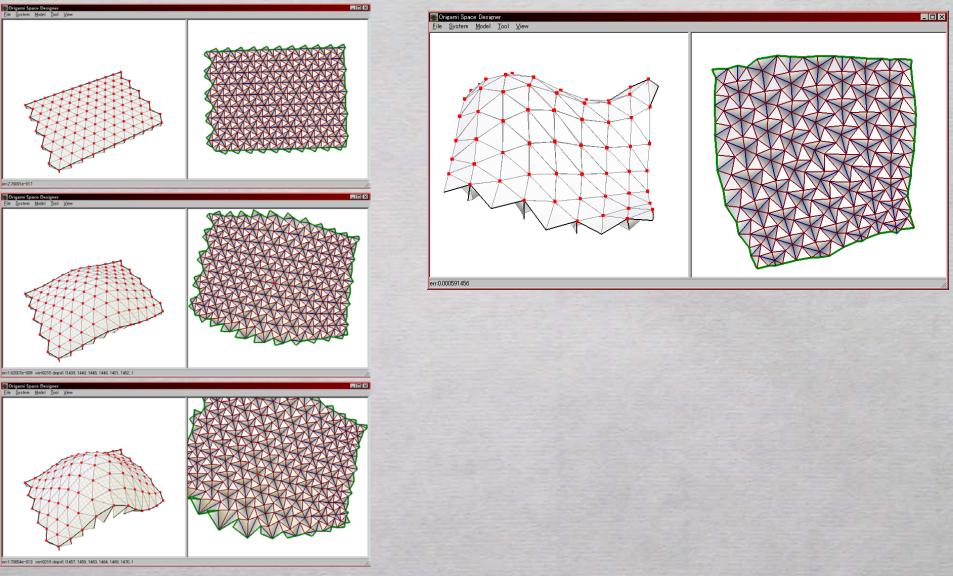
Origami Metamorphose Tomohiro Tachi 2010

Ron Resch Pattern

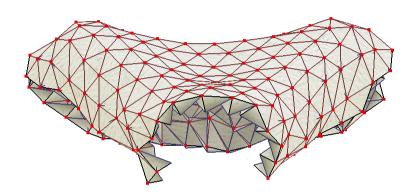
- Original
 - Resch [1970]
- Characteristics
 - Flexible (multiDOF)
 - Forms a smooth flat surface
 + scaffold
- Conditions
 - Developable
 - 3-vertex coincide

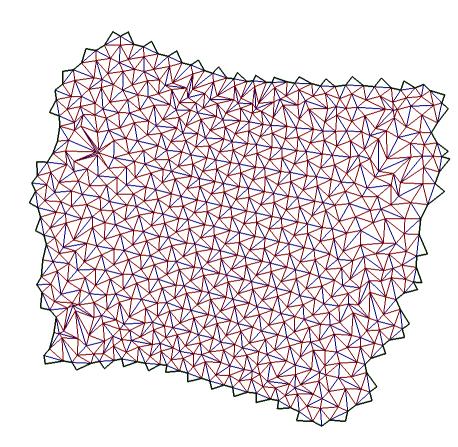


Ron Resch Pattern Generalized



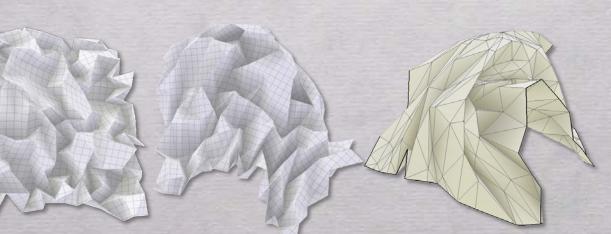
Generalized Ron Resch Pattern

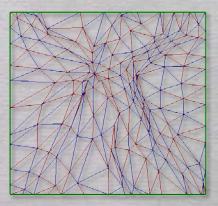




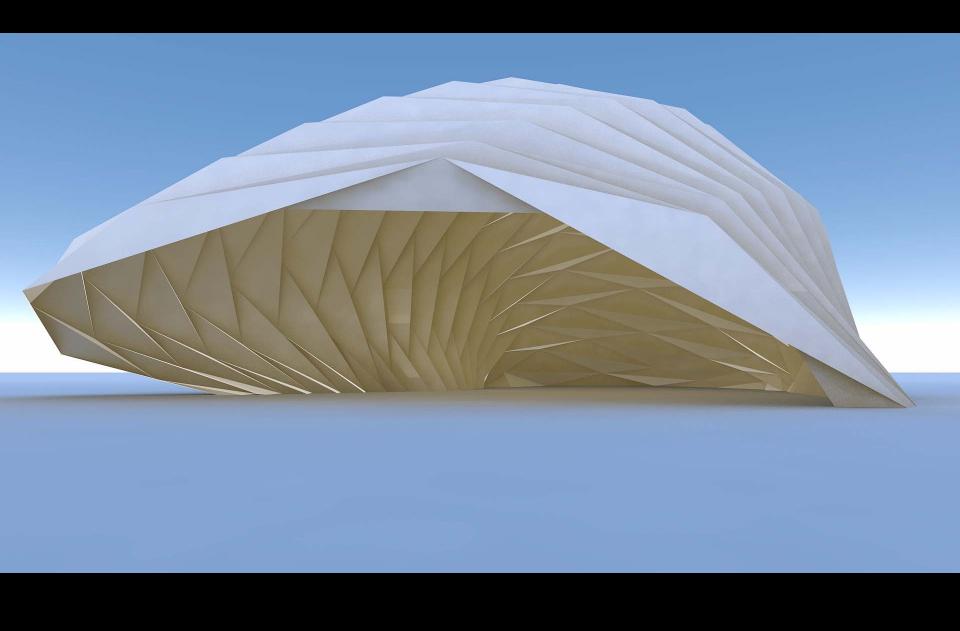
Crumpled Paper

- Origami
 - = crumpled paper
 - = buckled sheet
- Conditions
 - Developable
 - Fixed Perimeter





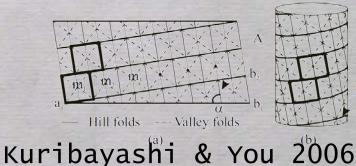
crumpled paper example



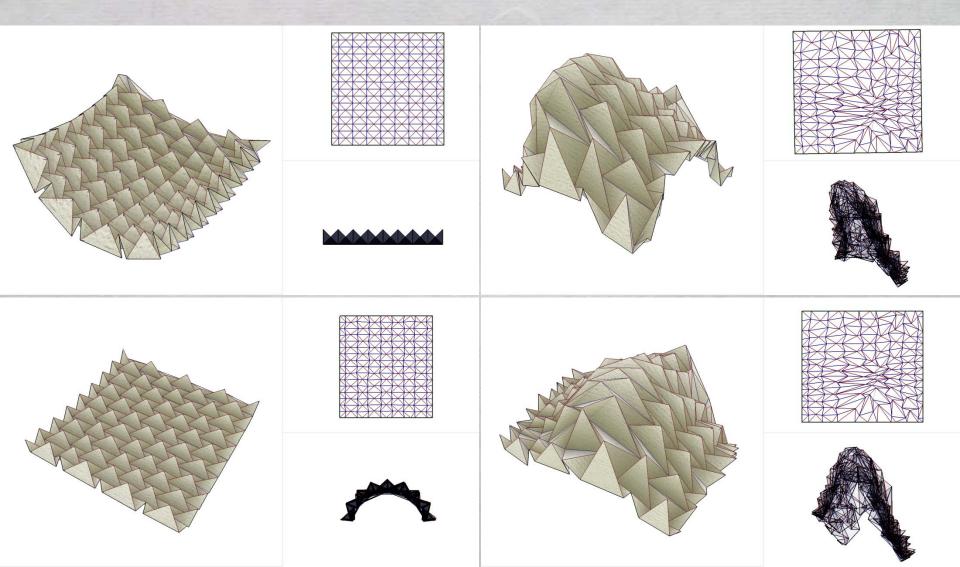
Waterbomb Pattern

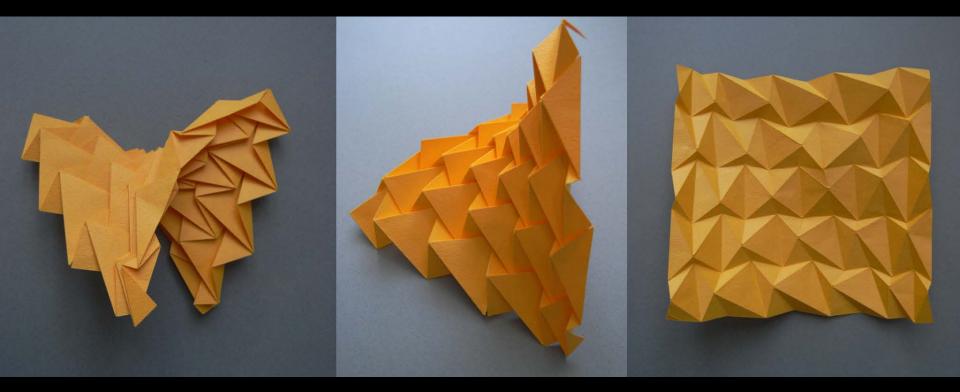
- "Namako" (by Shuzo Fujimoto)
- Characteristics
 - Flat-foldable
 - Flexible(multi DOF)
 - Complicated motion
- Application
 - packaging
 - textured material
 - cloth folding...

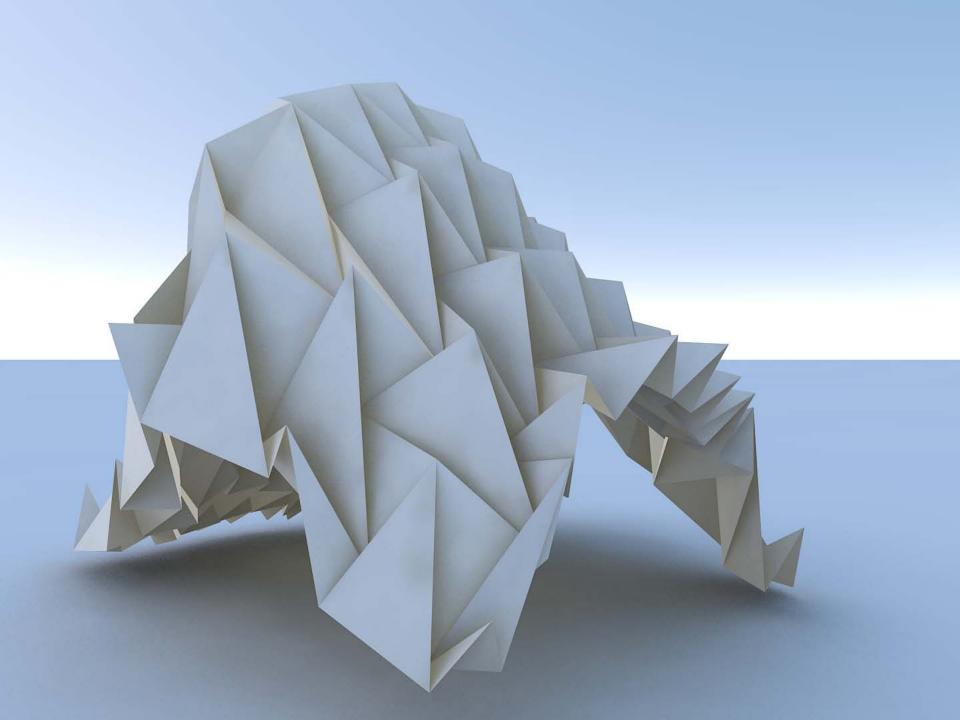
S. Mabona "Fugu"



Waterbomb Pattern Generalized







Rigid Origami

•Tachi T.: "Rigid-Foldable Thick Origami", in Origami5, to appear.

•Tachi T.: "Freeform Rigid-Foldable Structure using Bidirectionally Flat-Foldable Planar Quadrilateral Mesh", Advances in Architectural Geometry 2010, pp. 87--102, 2010.

•Miura K. and Tachi T.: "Synthesis of Rigid-Foldable Cylindrical Polyhedra," Journal of ISIS-Symmetry, Special Issues for the Festival-Congress Gmuend, Austria, August 23-28, pp. 204-213, 2010.

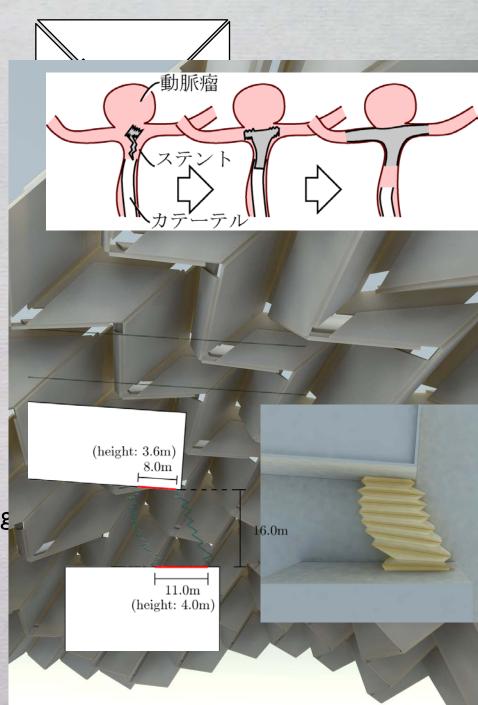
•Tachi T.: "One-DOF Cylindrical Deployable Structures with Rigid Quadrilateral Panels," in Proceedings of the IASS Symposium 2009, pp. 2295-2306, Valencia, Spain, September 28- October 2, 2009.

•Tachi T.: "Generalization of Rigid-Foldable Quadrilateral-Mesh Origami," Journal of the International Association for Shell and Spatial Structures (IASS), 50(3), pp. 173–179, December 2009.

•Tachi T.: "Simulation of Rigid Origami," in Origami4, pp. 175-187, 2009.

Rigid Origami?

- Rigid Origami is
 - Plates and Hinges model for origami
- Characteristics
 - Panels do not deform
 - Do not use Elasticity
 - synchronized motion
 - Especially nice if One-DOF
 - watertight cover for a space
- Applicable for
 - self deployable micro mechanism
 - large scale objects under gravity using thick panels



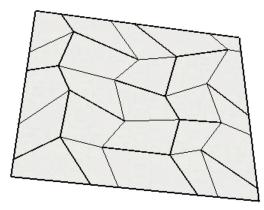
Study Objectives

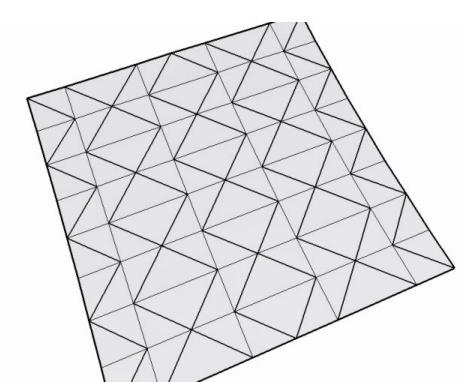
I. Generalize rigid foldable structures to freeform

- I. Generic triangular-mesh based design
 - multi-DOF
 - statically determinate
- 2. Singular quadrilateral-mesh based design
 - one-DOF
 - redundant contraints

2. Generalize rigid foldable structures to cylinders and more

Examples of Rigid Origami



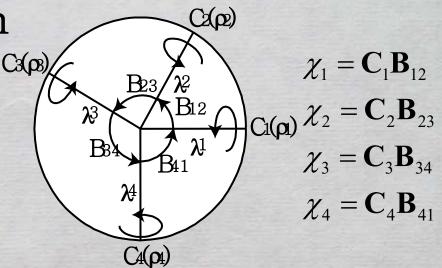


Basics of Rigid Origami Angular Representation

- Constraints
 - [Kawasaki 87]
 [belcastro and Hull 02]

 $\chi_1\cdots\chi_{n-1}\chi_n=\mathbf{I}$

- 3 equations per interior vertex
- V_{in} interior vert + E_{in} foldline model:
 - constraints: $\begin{bmatrix} \mathbf{C} \end{bmatrix} \quad \dot{\mathbf{p}} = \mathbf{0}$ $3V_{in} \times E_{in} \text{ matrix}$



Generic case: $DOF = E_{in} - 3V_{in}$ $\dot{\rho} = [I_N - C^+C]\dot{\rho}_0$ (where C⁺ is the pseudo-inverse of C)

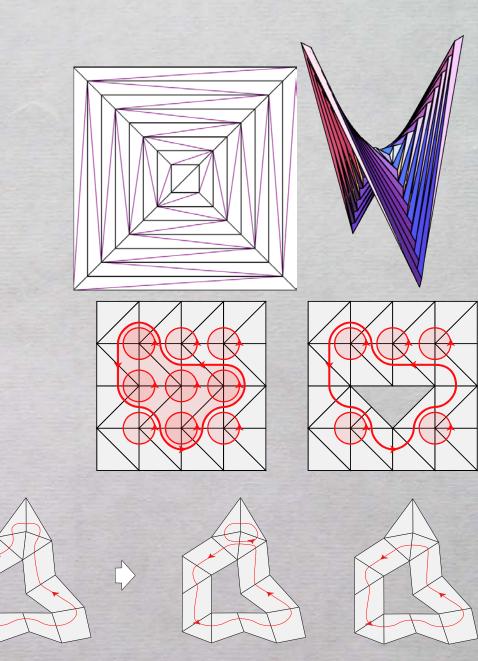
DOF in Generic Triangular Mesh

Euler's: $(V_{in} + E_{out}) - (E_{out} + E_{in}) + F = I$ Triangle : $3F = 2E_{out} + E_{in}$ Mechanism: $DOF = E_{in} - 3V_{in}$

Disk with E_{out} outer edges $DOF = E_{out} -3$

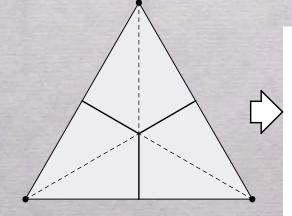
with H generic holes DOF = $E_{out} - 3 - 3H$

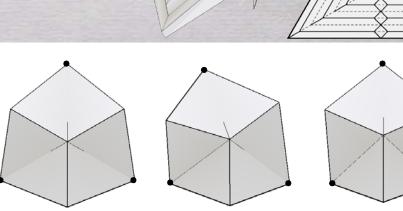
 $(V_{in}+E_{out})-(E_{out}+E_{in})+F=I-H$ DOF = E_{in} -3 V_{in} -6H

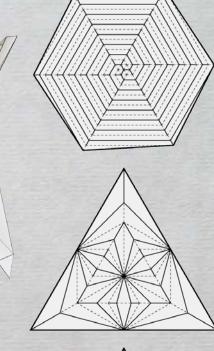


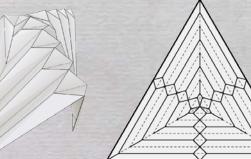
Hexagonal Tripod Shell

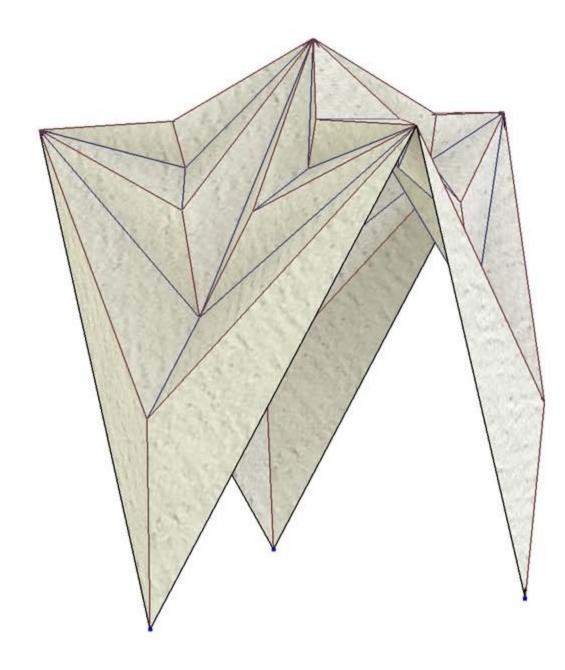
- Hexagonal boundary:
- $E_{out} = 6$
- : DOF = 6 3 = 3
- + rigid DOF = 6
- 3 pin joints (x,y,z):
- \therefore 3x3 = 9 constraints





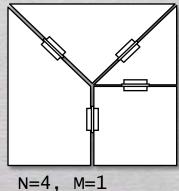




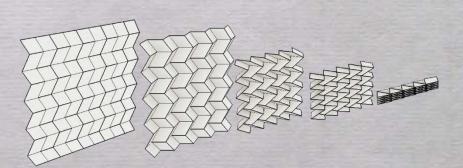


Generalize Rigid-Foldable Planar Quad-Mesh

- One-DOF
 - Every vertex transforms in the same way
 - Controllable with single actuator
- Redundant
 - Rigid Origami in General
 - DOF = N 3M
 - N: num of foldlines
 - M: num of inner verts
 - nxn array N=2n(n-1), M=(n-1)2
 DOF=-(n-2)2+1
 - -> n>2, then overconstrained if not singular
 - Rank of Constraint Matrix is N-I
 - Singular Constraints
 - Robust structure
 - Improved Designability

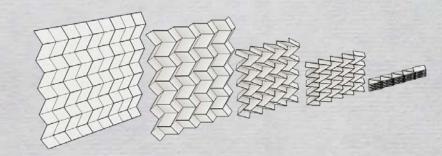


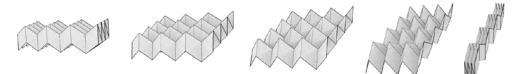
N=4, M=1DOF = 1



Idea: Generalize Regular pattern

- Original
 - Miura-ori
 - Eggbox pattern





Generalize

 Generalization
 To: Non Symmetric forms

(Do not break rigid foldability)

Flat-Foldable Quadrivalent Origami MiuraOri Vertex

- one-DOF structure
 - x,y in the same direction

- Miura-ori
- Variation of Miura-ori



Flat-Foldable Quadrivalent Origami MiuraOri Vertex

 ℓ_1

 ℓ_0

 ℓ_3

 θ_3

 θ_2

 θ_0

lo

 θ_1

Intrinsic Measure:

$$\theta_0 = \pi - \theta_2$$
$$\theta_1 = \pi - \theta_3$$

- Folding Motion
 - Opposite fold angles are equal
 - Two pairs of folding motions $\rho_1 = -\rho_3$ are linearly related. $\rho_0 = \rho_2$

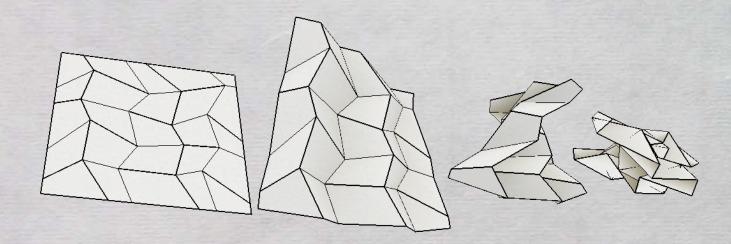
$$\tan\frac{\rho_0}{2} = \sqrt{\frac{1 + \cos(\theta_0 - \theta_1)}{1 + \cos(\theta_0 + \theta_1)}} \tan\frac{\rho_1}{2}$$

 ρ_3

 ρ_0

ρ,

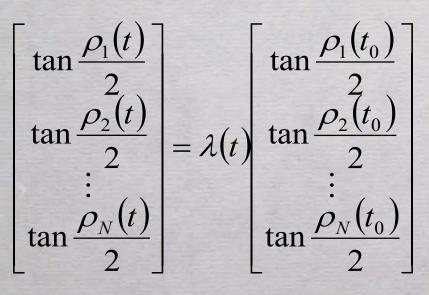
Flat-Foldable Quadrivalent Origami MiuraOri Vertex

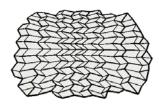


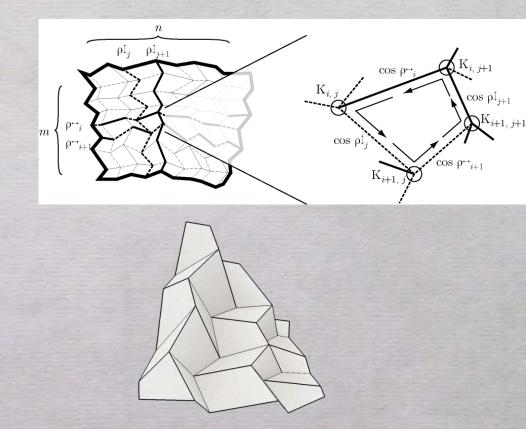
 $\begin{bmatrix} \tan \frac{\rho_{1}(t)}{2} \\ \tan \frac{\rho_{2}(t)}{2} \\ \vdots \\ \tan \frac{\rho_{N}(t)}{2} \end{bmatrix} = \lambda(t) \begin{bmatrix} \tan \frac{\rho_{1}(t_{0})}{2} \\ \tan \frac{\rho_{2}(t_{0})}{2} \\ \vdots \\ \tan \frac{\rho_{N}(t_{0})}{2} \end{bmatrix} \qquad \rho_{1} = -\rho_{3}$ $\rho_{0} = \rho_{2}$ $\tan \frac{\rho_{0}}{2} = \sqrt{\frac{1 + \cos(\theta_{0} - \theta_{1})}{1 + \cos(\theta_{0} + \theta_{1})}} \tan \frac{\rho_{1}}{2}$

Get One State and Get Continuous Transformation

- Finite Foldability: Existence of Folding Motion ⇔
- There is one static state with
- Developability
- Flat-foldability
- Planarity of Panels

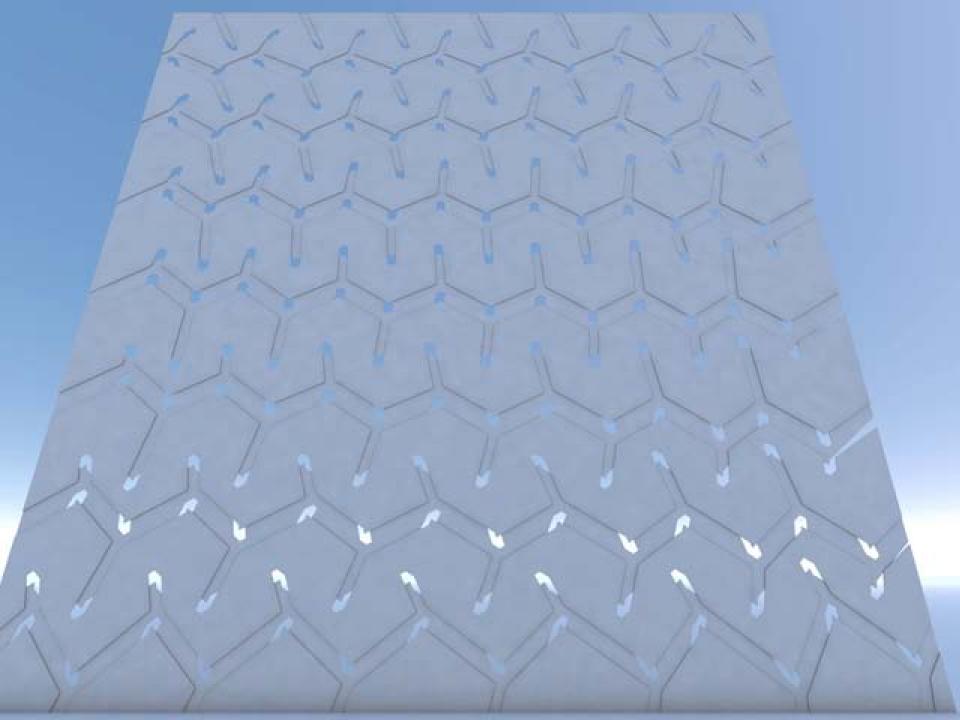






Built Design

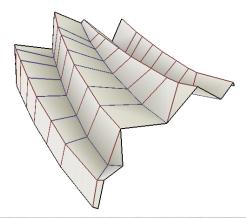
- Material
 - I0mm Structural Cardboa (double wall)
 - Cloth
- Size
 - 2.5m x 2.5m
- exhibited at NTT ICC

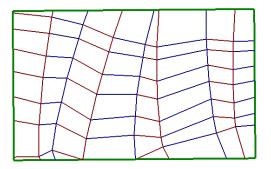


Rigid Foldable Curved Folding

- Curved folding is rationalized by Planar Quad Mesh
- Rigid Foldable Curved Folding

=



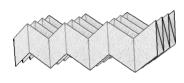


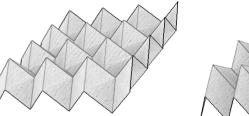
Curved folding without ruling sliding



Discrete Voss Surface Eggbox-Vertex

- one-DOF structure
 - Bidirectionally Flat-Foldable



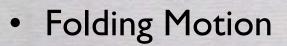


- Egguox-rallern
- Variation of Eggbox Pattern

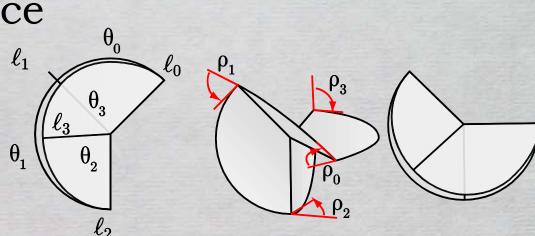
Discrete Voss Surface Eggbox-Vertex ℓ_1

Intrinsic Measure:

$$\theta_0 = \theta_2$$
$$\theta_1 = \theta_3$$



- Opposite fold angles are equal
- Two pairs of folding motions are linearly related.
 [SCHIEF et.al. 2007]



Complementary Folding Angle

$$_{1} = \rho_{3} = \pi - \rho_{1}' = \pi - \rho_{3}'$$

 $\rho_0 = \rho_2$

$$\tan \frac{\rho_0}{2} = \sqrt{\frac{1 + \cos(\theta_0 - \theta_1)}{1 + \cos(\theta_0 + \theta_1)}} \cot \frac{\rho_1}{2}$$
$$= \sqrt{\frac{1 + \cos(\theta_0 - \theta_1)}{1 + \cos(\theta_0 - \theta_1)}} \tan \frac{\rho_1'}{2}$$

 $UUS(U_0$

Eggbox: Discrete Voss Surface

Use Complementary Folding Angle for "Complementary Foldline"

 $\lambda(t) \frac{\tan \frac{\rho_0(t_0)}{2}}{\tan \frac{\rho_1(t_0)}{2}}$ $\frac{\tan \frac{\rho_0(t)}{2}}{\tan \frac{\rho_1(t)}{2}} =$ $=\lambda(t)$ $\tan \frac{\rho_N(t)}{t}$ $\tan \frac{\dot{\rho}_N(t_0)}{\dot{\rho}_N(t_0)}$

Complementary Folding Angle

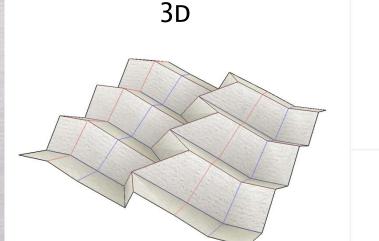
$$= \rho_3 = \pi - \rho_1' = \pi - \rho_3'$$

 ho_0

$$\tan \frac{\rho_0}{2} = \sqrt{\frac{1 + \cos(\theta_0 - \theta_1)}{1 + \cos(\theta_0 - \theta_1)}} \cot \frac{\rho_1}{2}$$
$$= \sqrt{\frac{1 + \cos(\theta_0 - \theta_1)}{1 + \cos(\theta_0 - \theta_1)}} \tan \frac{\rho_1'}{2}$$

Hybrid Surface: BiDirectionally Flat-Foldable PQ Mesh

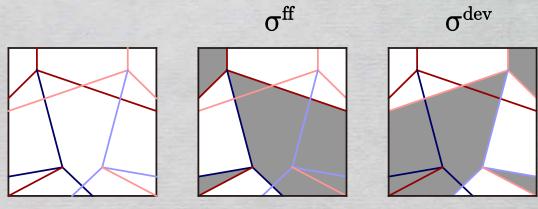
- use 4 types of foldlines
 - mountain fold **0**° -180° • - valley fold 0° 80° • complementary ountain fold -180° • complementary valley fold 0° 80 "developed" flat-folded state state



Flat-folded

Developability and Flat-Foldability

- Developed State:
 - Every edge has fold angle complementary fold angle be 0°

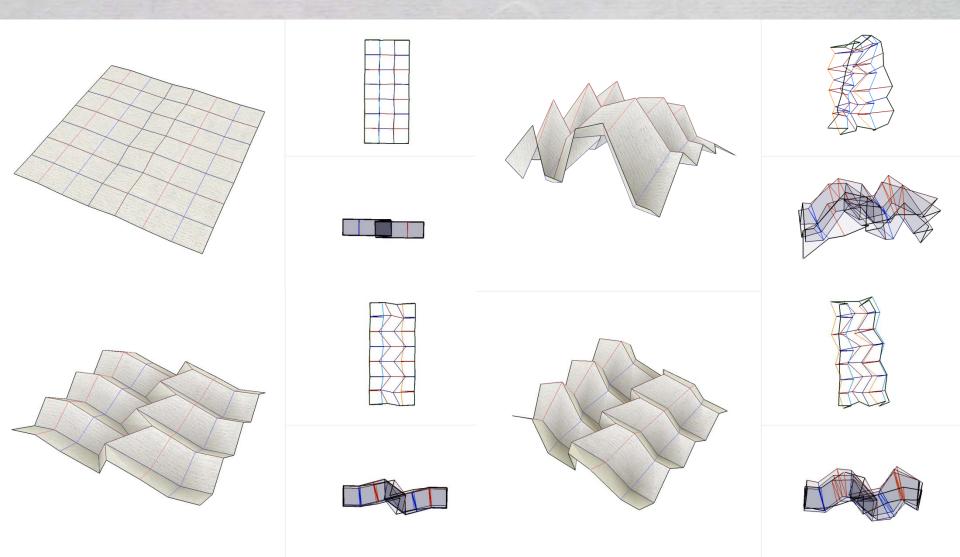


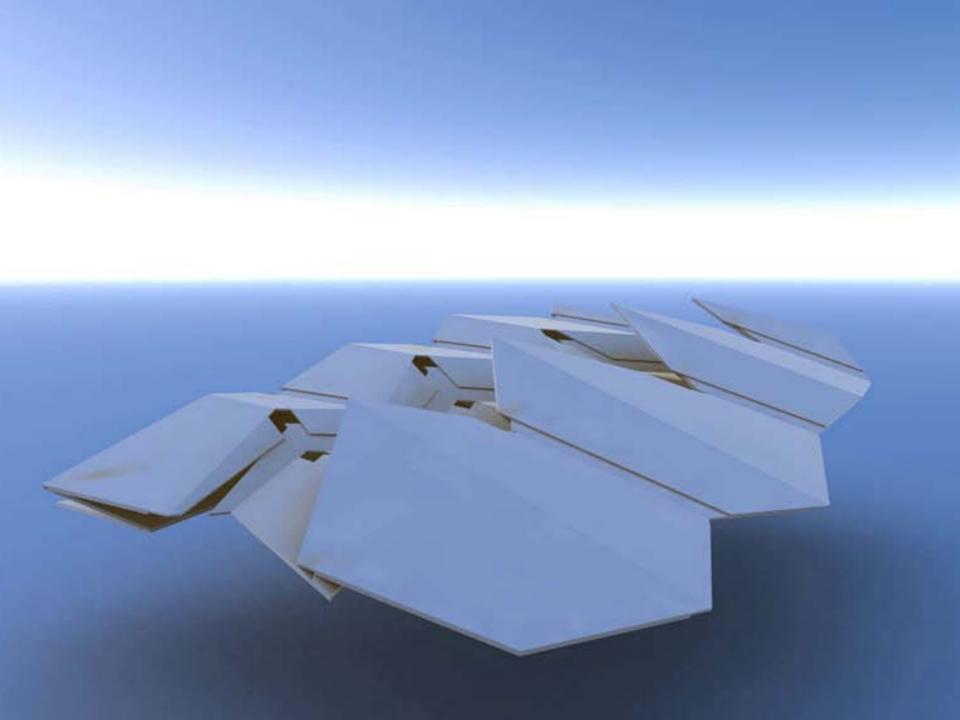
$$\begin{cases} \sum_{i=0}^{3} \sigma^{dev}(i)\theta_{i} = 0 & \cdots 4CF & or & 2F + 2CF \\ 2\pi - \sum_{i=0}^{3} \theta_{i} = 0 & \cdots & 4F \end{cases}$$

- Flat-folded State:
 - Every edge has fold angle complementary fold angle to be ±180°

$$\begin{cases} \sum_{i=0}^{3} \sigma^{ff}(i)\theta_{i} = 0 \quad \cdots \quad 4F \quad or \quad 2F + 2CF \\ 2\pi - \sum_{i=0}^{3} \theta_{i} = 0 \quad \cdots \quad 4CF \end{cases}$$

Hybrid Surface: BiDirectionally Flat-Foldable PQ Mesh





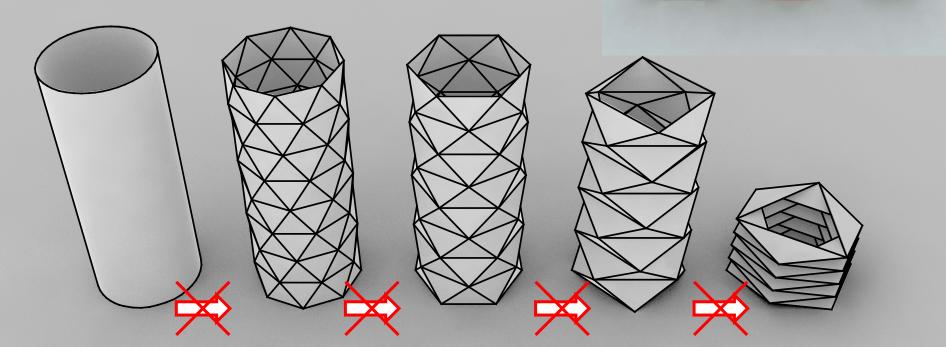
Rigid-foldable Cylindrical Structure

3b

Topologically Extend Rigid Origami

 Generalize to the cylindrical, or higher genus rigidfoldable polyhedron.

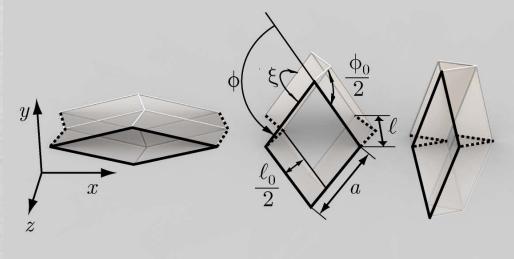
• But it is not trivial!

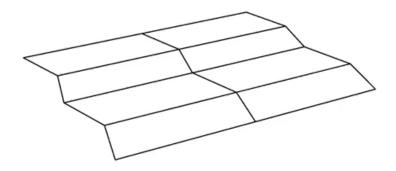


Rigid-Foldable Tube Basics

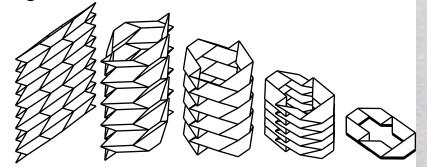
Miura-Ori Reflection

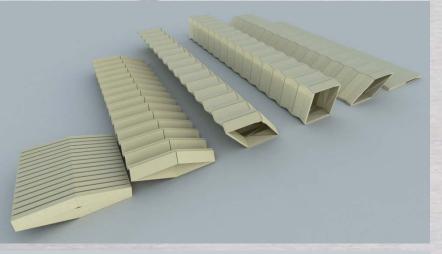
(Partial Structure of Thoki Yenn's "Flip Flop")

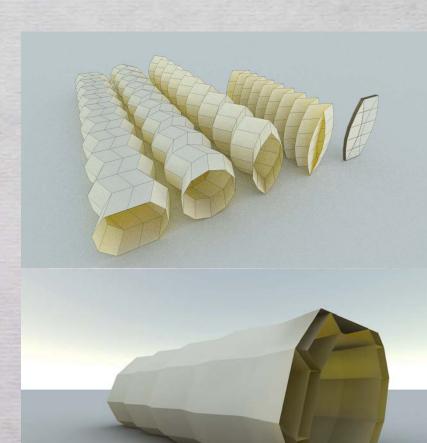




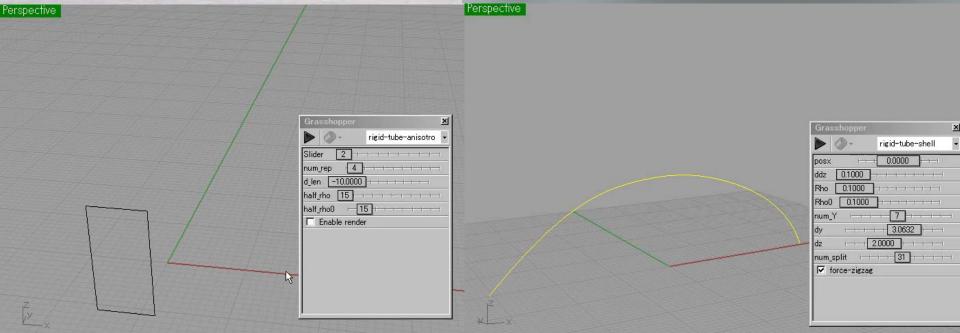
Symmetric Structure Variations



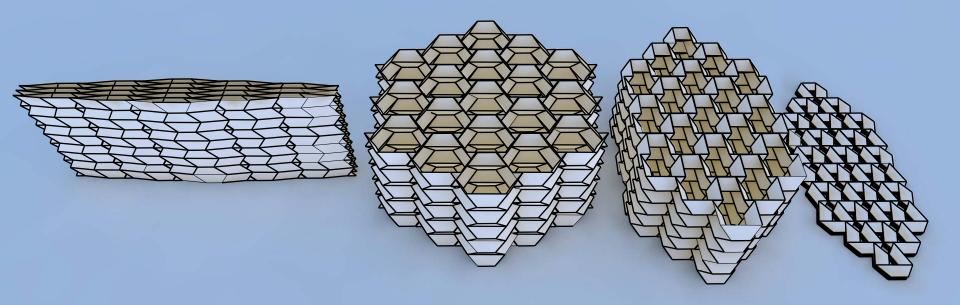


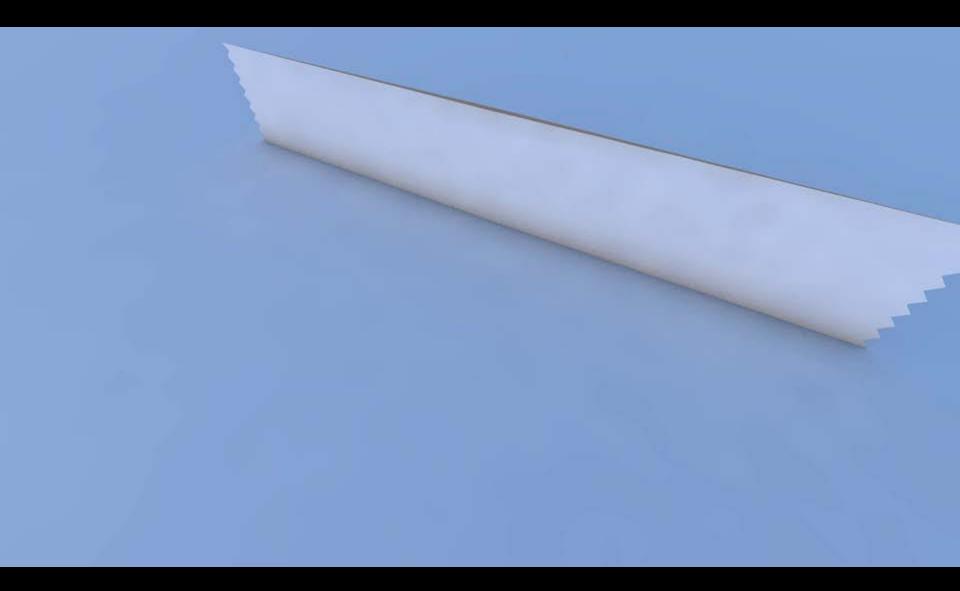


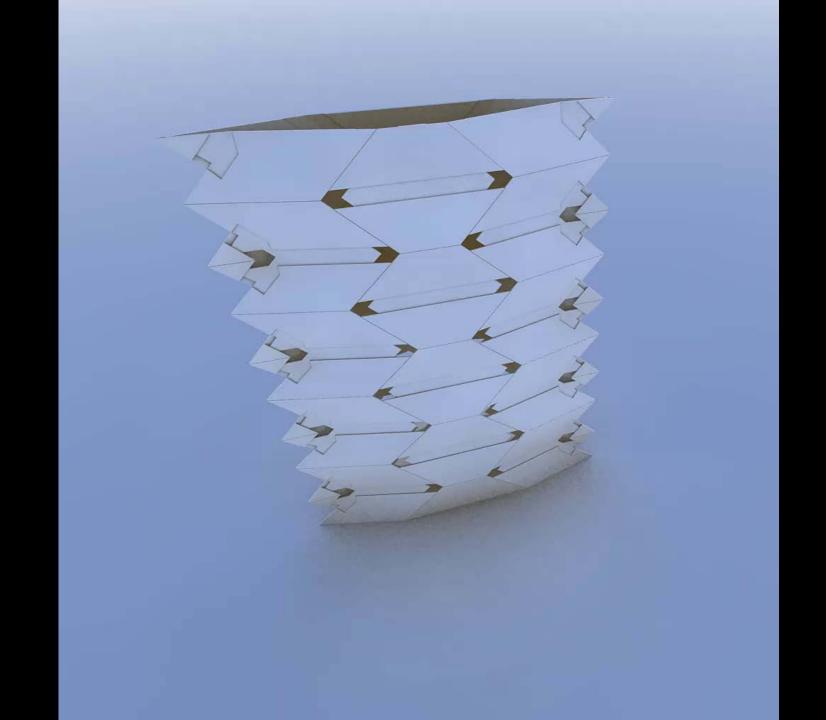
Parametric design of cylinders and composite structures



Cylinder -> Cellular Structure [Miura & Tachi 2010]

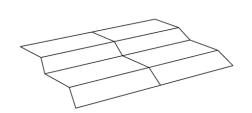


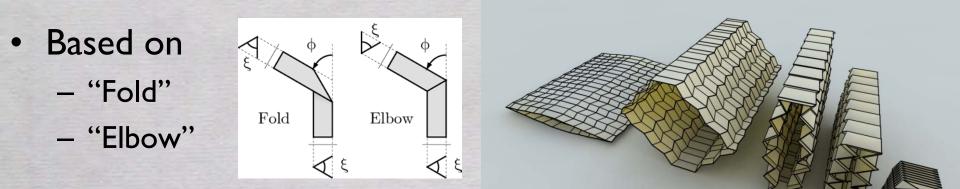




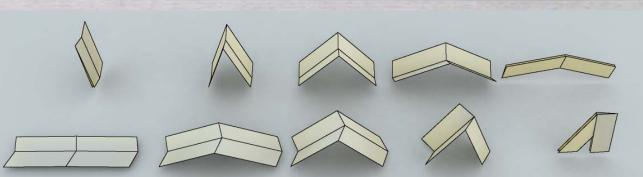
Isotropic Rigid Foldable Tube Generalization

 Rigid Foldable Tube based on symmetry





= special case of BDFFPQ Mesh



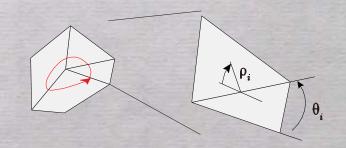
Generalized Rigid Folding Constraints

 For any closed loop in Mesh

$$T_{0,1}\cdots T_{k-2,k-1}T_{k-1,0} = 1$$

where $T_{i,j}$ is a 4x4 transformation matrix to translate facets coordina i to j

When it is around a vertex: T is a rotation matrix.



 y_{i+1}

 z_{i+1}

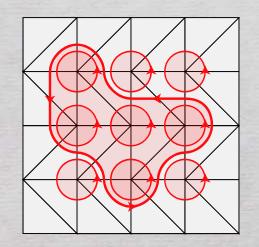
 y_{i}

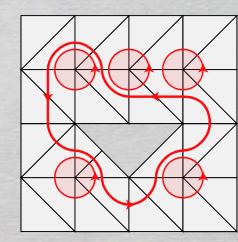
 $\mathbf{T}_{i,i+1}(\mathbf{\rho}_i)$

X.

Generalized Rigid Folding Constraints

- If the loop surrounds no hole:
 - constraints around each vertex
- If there is a hole,
 - constraints around each vertex
 - + I Loop Condition

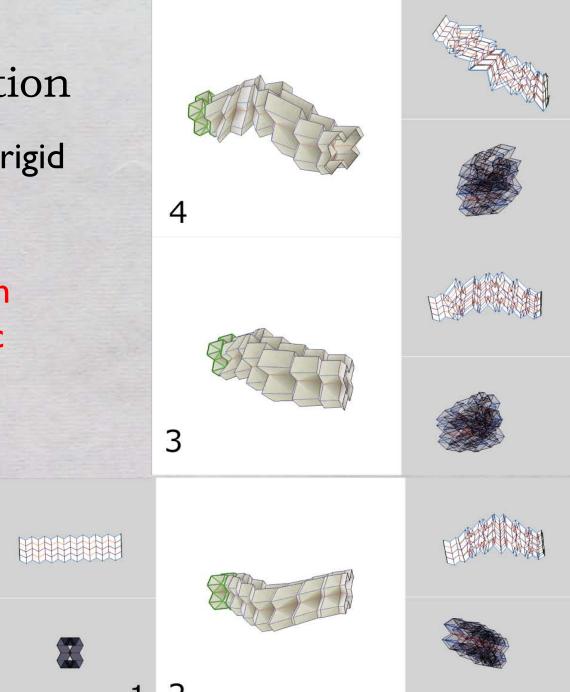


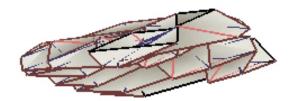


Loop Condition : Sufficient Condition

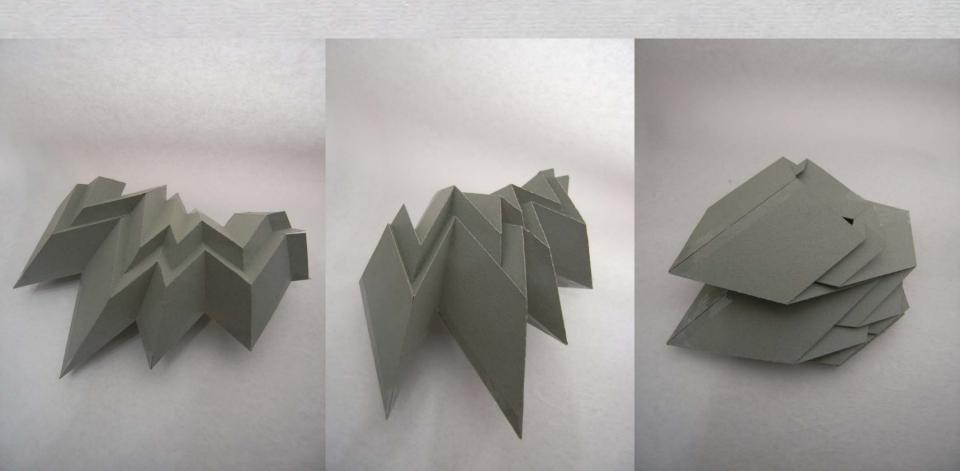
loop condition for finite rigid foldability

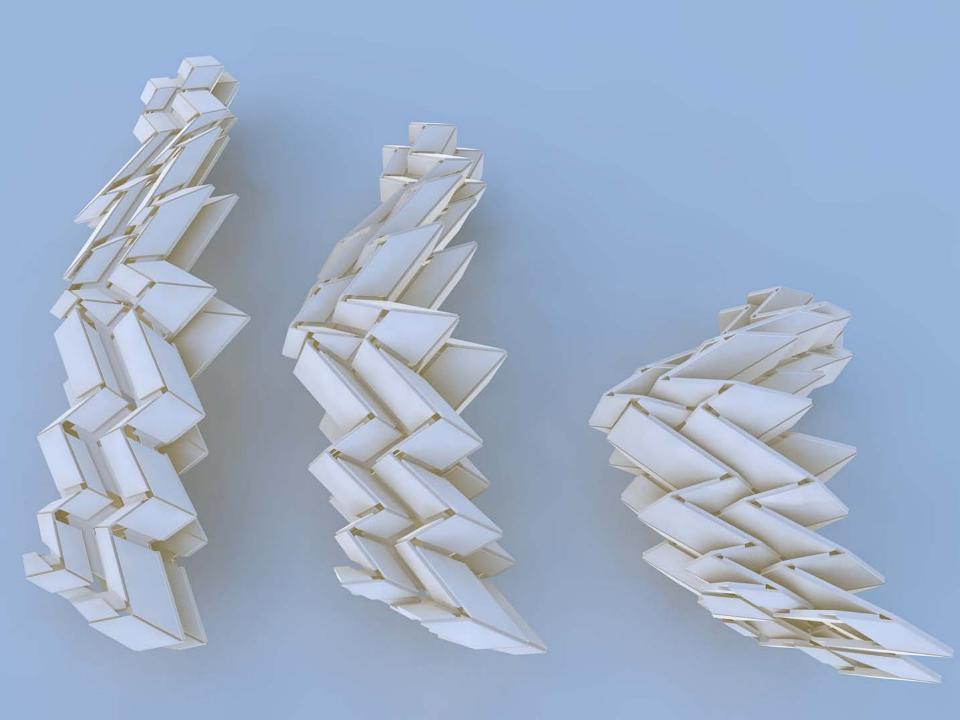
→ Sufficient Condition : start from symmetric cylinder and fix I loop

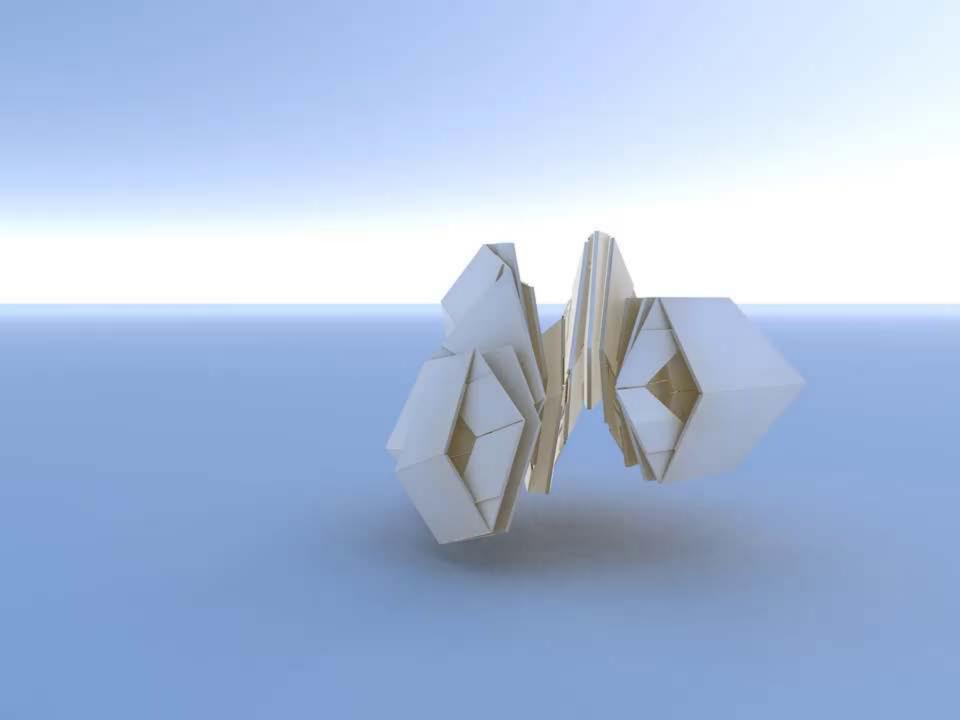




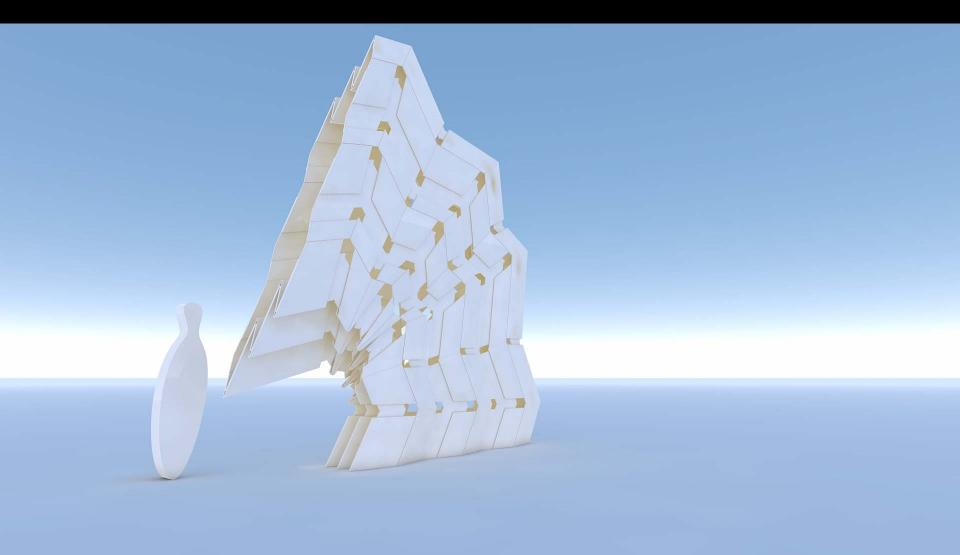
Manufactured From Two Sheets of Paper

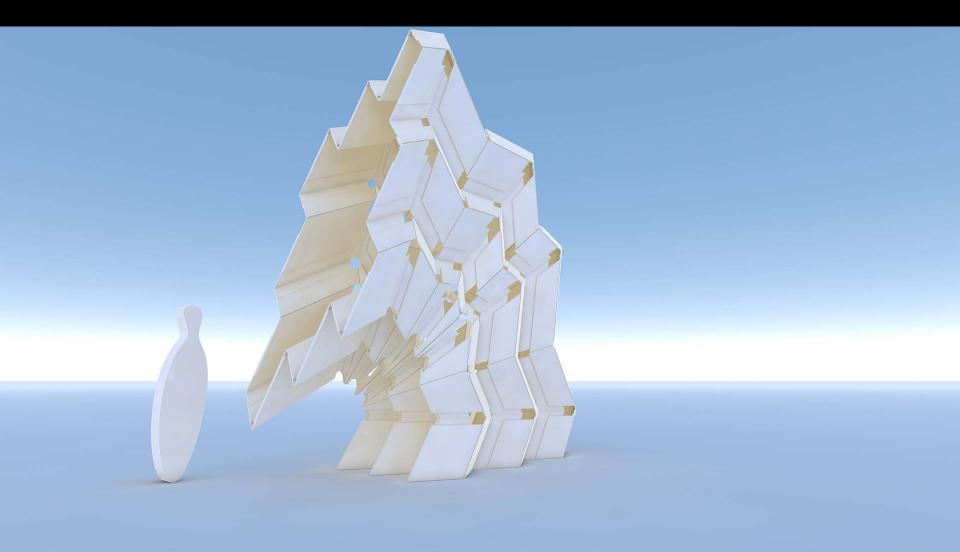


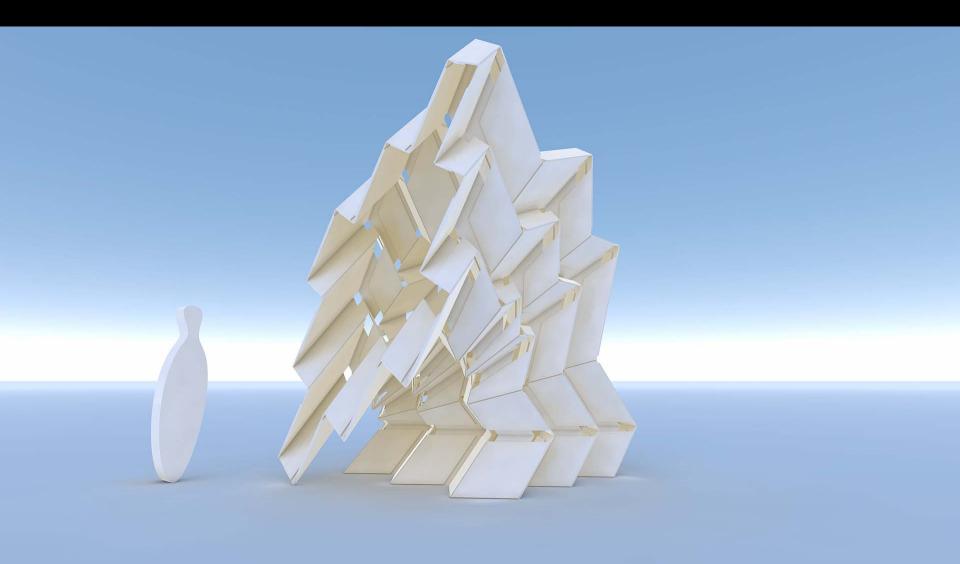


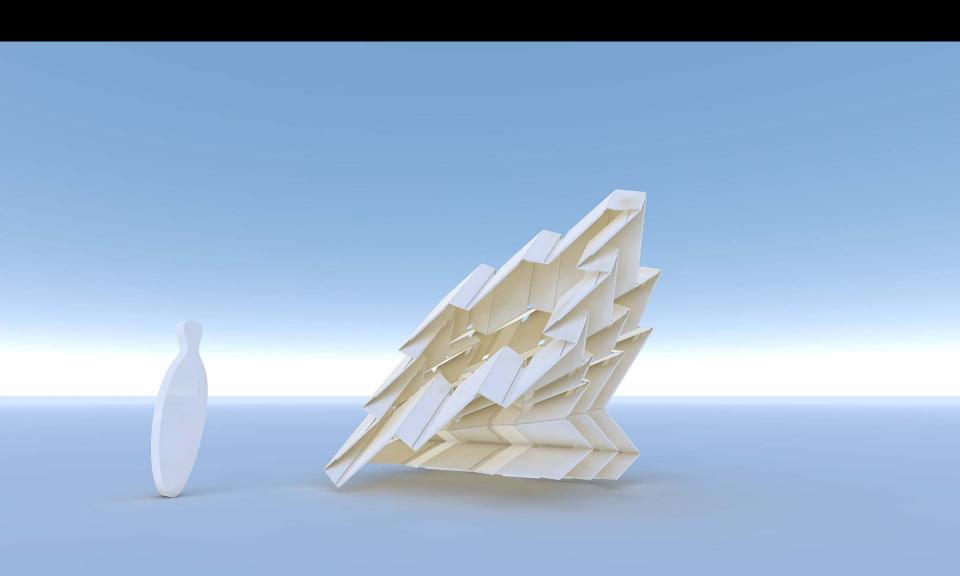


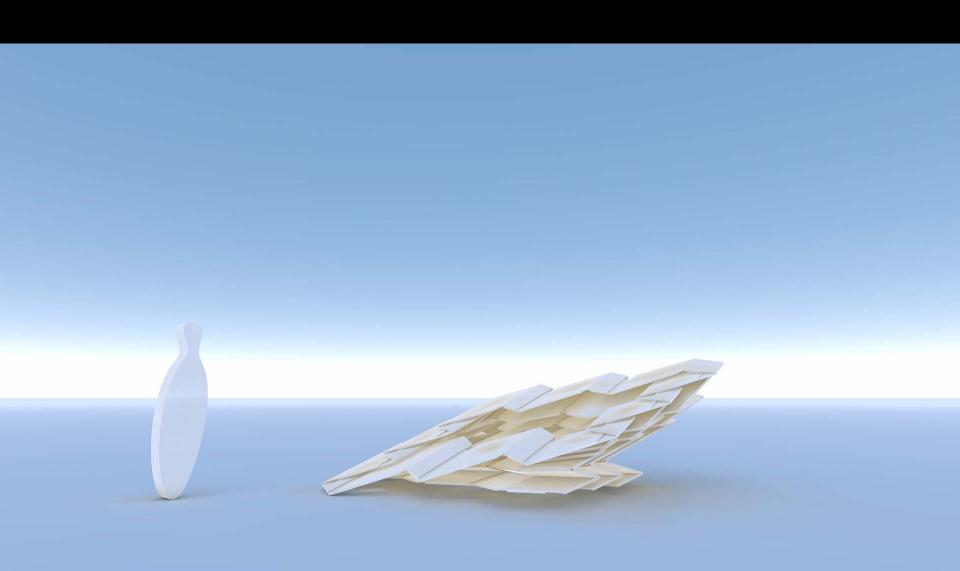






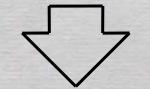


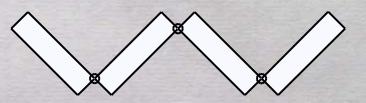




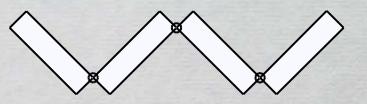
Thickening

- Rigid origami is ideal surface (no thickness)
- Reality:
 - There is thickness
 - To make "rigid"
 panels, thickness must
 be solved
 geometrically
- Modified Model:
 - Thick plates
 - Rotating hinges at the edges

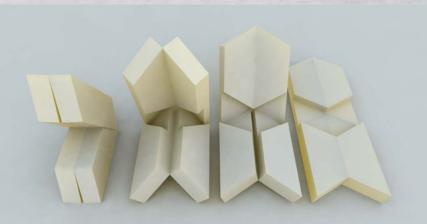


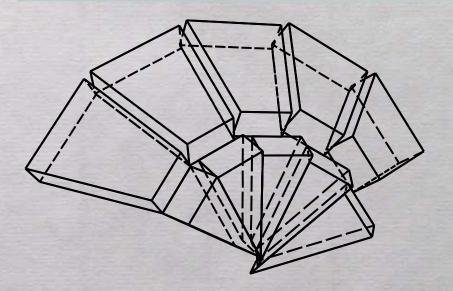


Hinge Shift Approach

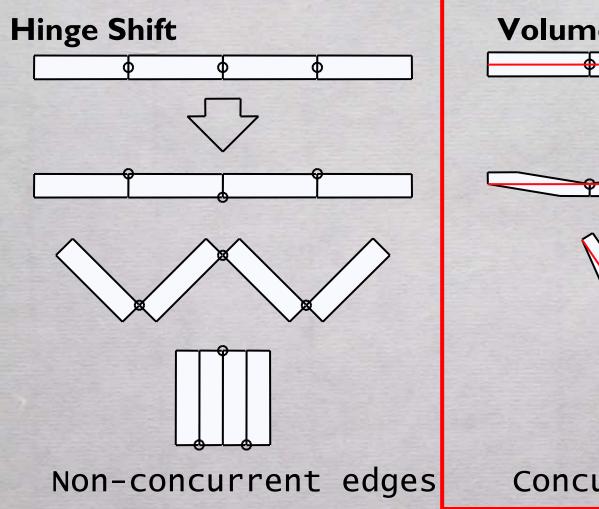


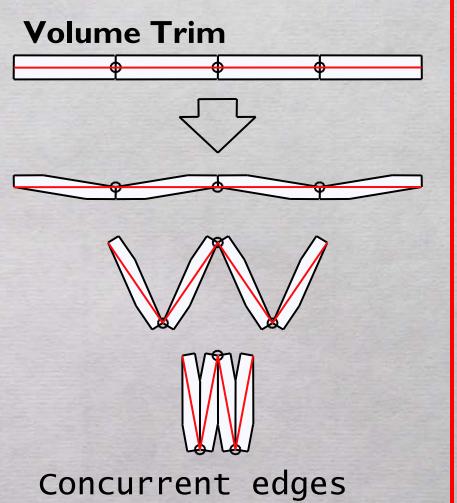
- Main Problem
 - non-concurrent edges →6
 constraints (overconstrained)
- Symmetric Vertex:
 - [Hoberman 88]
 - use two levels of thickness
 - works only if the vertex is symmetric (a = b, c=d=π-a)
- Slidable Hinges
 - [Trautz and Kunstler 09]
 - Add extra freedom by allowing "slide"
 - Problem: global accumulation of slide (not locally designable)





Our Approach



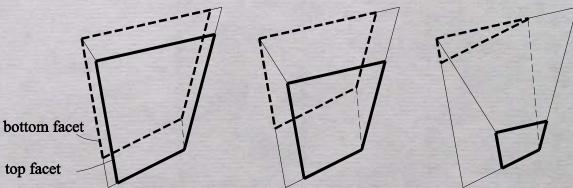


Trimming Volume

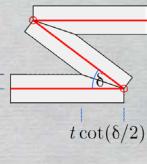
• folds up to $\pi - \delta$

offsetting edges by

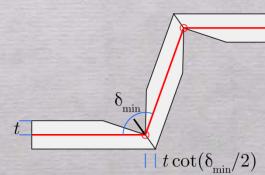
 $t \cot\left(\frac{\delta}{2}\right)$ $\rightarrow \text{Different speed for}$ each edge: Weighed Straight Skeleton

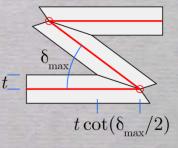


Variations

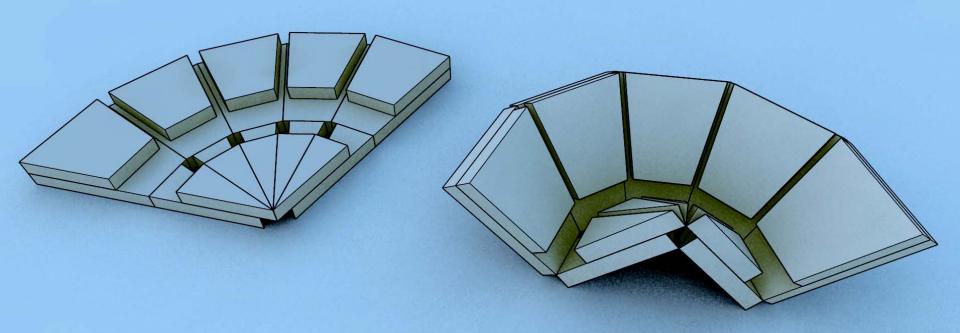


- Use constant thickness panels
 - if both layers overlap sufficiently
- use angle limitation
 - useful for defining the "deployed 3D state"

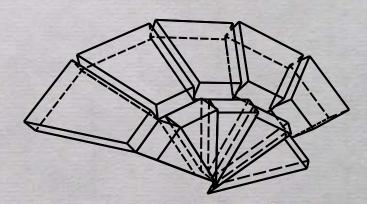


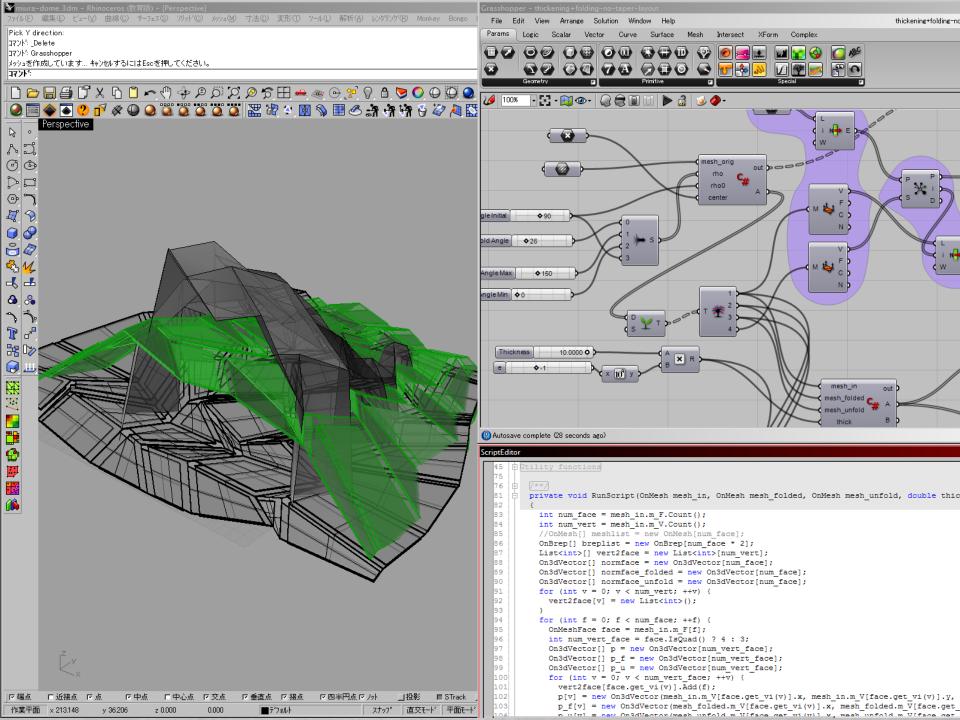


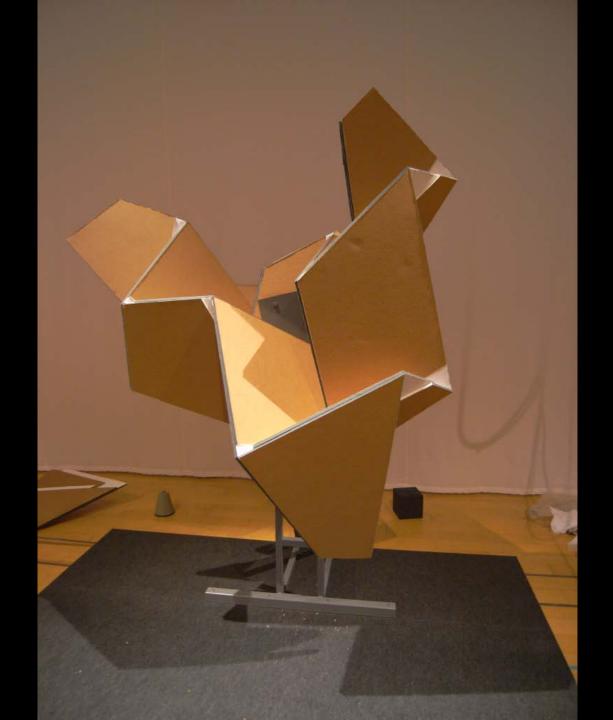
Example

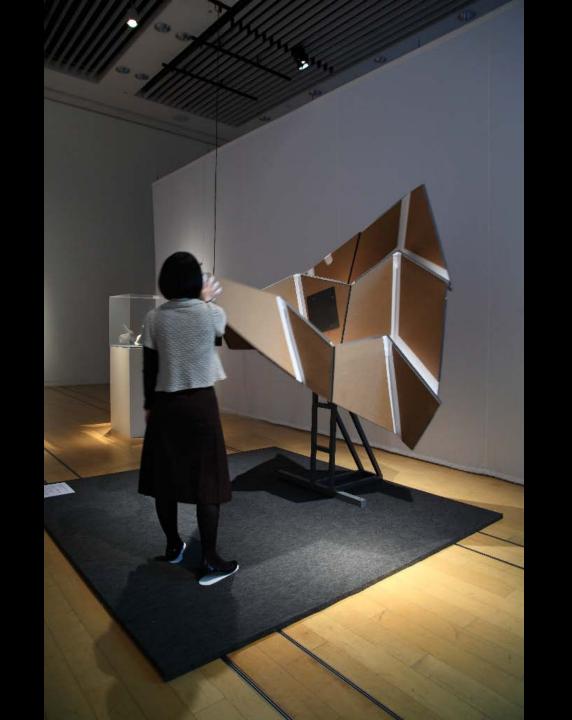


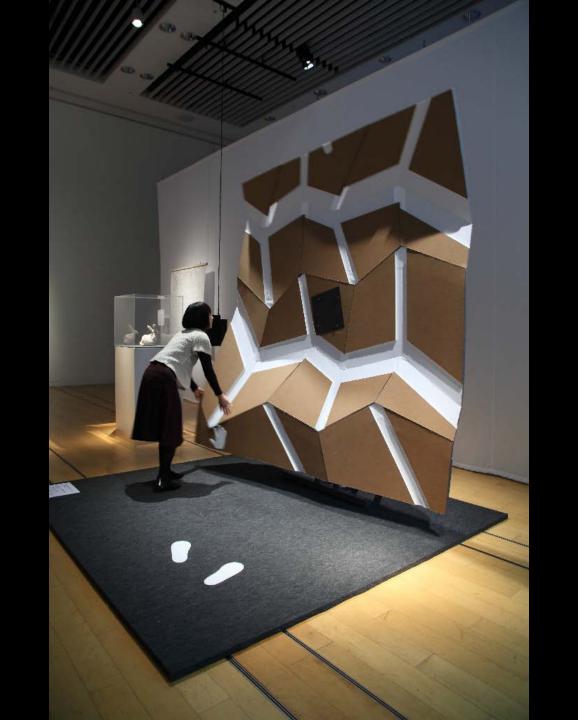
- Constant Thickness Model
 - the shape is locally defined
 - cf: Slidable Hinge \rightarrow

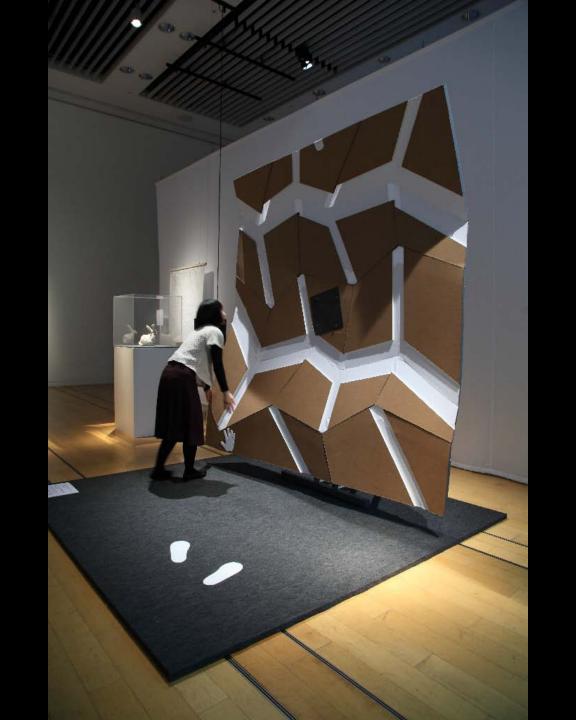






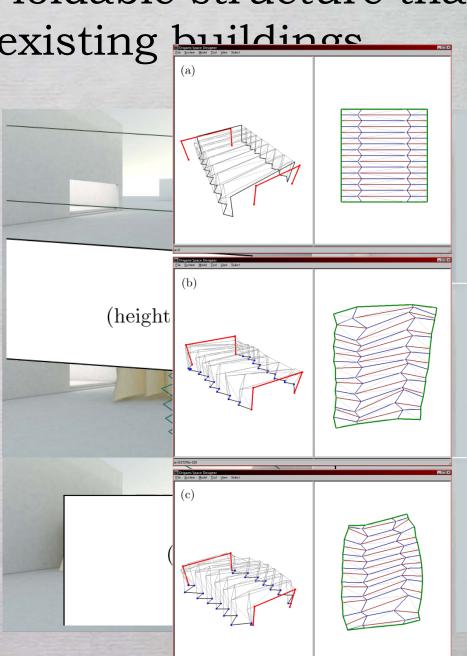






Example: Construct a foldable structure that temporarily connects existing <u>huildings</u>

- Space: Flexible
 - Connects when opened
 - Openings: different position and orientation
 - Connected gallery space
 - Compactly folded
 - to fit the facade
- Structure: Rigid
 - Rigid panels and hinges



Panel Layout

