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• An origami model whose finished result can be pressed in a book without 
crumpling or adding new creases.

• Implies that all creases are straight lines.

• All creases are either mountains                                or valleys

• Examples:

What is a flat origami?

Traditional flapping
bird (crane) Jun Maekawa’s Devil



Flat vertex folds

• Looking at a single vertex in a flat origami crease pattern.

• The vertex is in the paper’s interior (not on the boundary of the paper).

• Maekawa’s Theorem:  The difference between the number of mountain and 
valley creases in a flat vertex fold is always two.   ( | M - V | = 2)

a (flat) polygon



Flat vertex folds

• Looking at a single vertex in a flat origami crease pattern.

• The vertex is in the paper’s interior (not on the boundary of the paper).

• Maekawa’s Theorem:  The difference between the number of mountain and 
valley creases in a flat vertex fold is always two.   ( | M - V | = 2)

The monorail rotates 180° at each M and -180° at each V.
Thus   180 M – 180 V = 360,

or  M – V = 2.



Flat vertex folds

• Kawasaki’s Theorem:  A collection of creases meeting at a vertex are flat-
foldable if and only if the sum of the alternate angles around the vertex is  π.

So...    α1  – α2 + α3  – α4 + ... – α2n = 0
add to this  α1 + α2 + α3 + α4 + ... + α2n = 2π

and you get 2α1 + 2α3 + ... + 2α2n-1 = 2π
that is,  α1 + α3 + ... + α2n-1 = π

Proof of ⇒: Walk around the vertex, starting at a crease on the flat-folded object.
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History of these Theorems

• Kawasaki & Maekawa discovered these in the early 1980s.  
Reference:  Top Origami by Kasahara & Takahama, 1985 (Japanese version of 
Origami for the Connoisseur).  

• Justin discovered both of these in the 1980s as well.
Reference:  British Origami Magazine, 1986.
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• Other people, like Huffman (1976) and Husimi (1979) discovered the degree 4 
case (only) of Kawasaki.



History of these Theorems

• Kawasaki & Maekawa discovered these in the early 1980s.  
Reference:  Top Origami by Kasahara & Takahama, 1985 (Japanese version of 
Origami for the Connoisseur).  

• Justin discovered both of these in the 1980s as well.
Reference:  British Origami Magazine, 1986.

• Also, it’s not clear if Kawasaki originally saw the sufficiency direction of his 
Theorem, although Justin clearly did. 

• Other people, like Huffman (1976) and Husimi (1979) discovered the degree 4 
case (only) of Kawasaki.

• However, in a 1977 paper, Stewart A. Robertson (Univ. of Southampton, UK) 
discovered and proved the full necessary direction of Kawasaki, and more!
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When a sheet of paper is crumpled in the hands ann then cru
shed flat against a desk-top. the pattern

of creases so formed is governed he certain simple rules. These rules genera
lize to theorems on folding

Rtensannman mauoo;ds isometrically into ‘ne another
. The most interesting results apply to the ease in

which domain and eodomamn have the same dimension. The main technique of prnof c
ombines the

notion of volume v. ith Roof’s concept of the degree of a map.

The ideas in this paper are abstracted from a study of the following familiar

actions. Suppose that a plane sheet of paper is crumpl
ed gently in the hands, and

then is crushed flat against a desk top. The effect is to cris
s-cross the sheet with a

pattern of creases, which persist even- when the sheet
is unfolded and smoothed

out again to its original planar form. At first sight, the
pattern may seem random

a-nd chaotic. However, a closer inspection will lead to th
e following observations.

First of all, the creases appear to be composed of straight line segments.

Secondly, if p i-s the end-point of such a segment, then the total number of

crease-segments that end at p is even, (In fact, this number is usually four.)

Thirdly. the sum of alternate tingles between cre-ases at each such point p
is equal

to

This physical prc-cess can he modelled mathematiL--al
ly as follows. Let us replace

both the sheet of paper and the desk-top by the Euc
lidean plane R2, equipped

with its standard flat Riemannian tensorfield. We model the crumpling and

crushing process by a map f: - R7 that sends each piecewise-straight path in

to a piecewise-straight path of the same length.

More genezally, , insider two C° Riemannian manifolds Pl and N of dimen

s-iOns to and, a respectively. Then a map f Al — N is said to be an isometric

‘ins, or ‘ -Ito S c tn ptweeV So gco ea c uat’ } j
yr thc irdm,ed

path f ‘v J —a N is piecewise geodesic and of the same length as y. The
set of

points of- A-i where r fails 10 he differentiable’ correspond to the cre-ases on the

s-beet of paper. Onr general aim is to establish a body of theorems describing the

structure of this s:et,

The ma-in results are concerne-d with the case in which in = iv, and rest on a

synthesis ot metrie:ai ideas. and the notion of Hof
degic-e.

I am grateful to F. J. Craveiro de Carvaiho and H. R. J. Chiliingworth for a

number of autccstions and corrections.
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COROLLARY 3 If fc(M I’[) and deg f=0 then = V = V V

COROLLARY 4. if fE(M, N) and f is not surective. then degf=O
COROLL\R’ If fc .](M M) then degf =t) or degf= ± 1 according asV(f)Ø orV(Ø)=Ø.

Proof We can assume without loss of generality that V= I Hence ‘ = a
s here 0 a I and V = I — a Let deg f = ic Then

(Ø0<a<I-1<ic<1 l<K<l KO.
and

or i=a and V=i

K—2a—I———I or 1.

COROLL\RY 6 Let fe.(M N) Then for all xaM, L S(x (x))—*
S(f(x), fL(x)) has degree 0 ifxc(f) and had degree ±1 otherwise.

Proof. This is essentially a special case of Corollary 5, although S(x, (L(x)) and
S(f(t) i(x)) are distinct manifolds

3. SURFACES

The results of §2 take a particularly simple form in case Al is a surface (q = 2).
Putting Corollary 2 of §1 together with Theorem 4 and its corollaries, we obtain
the following theorem for isometric folding of surfaces.

THEOREM 5. Let fa (M, N), where both lvi and N are smooth Riemannian
2-manifolds. Then for each x e Z(f), the singularities off near x form the images of
an even number 2r of geodesic rays emanating from x, making alternate angles

ai, , . . .
, a, r’

where

a = =

We call the number r the order of the singularity x.
The set of singularities (f) of an isometric folding of a smooth Riemannian

surface M into another N is therefore a graph on Al, satisfying the angle
conditions of Theorem 5. Moreover, in case Al is compact and both Al and N are
oriented, the set (f) must partition M in accordance with the area conditions of
Theorem 4. Note that, by Theorem 5, every vertex of the graph (f) has even
valency. Of course f) need not be connected, and may have components
homeomorphic to a circle and having no vertices.
Figure 5 shows the positive (shaded) and negative (unshaded) 2-strata into

which a double torus S could be partitioned by the singularities of an isometric
folding f of S into itself. The image of f in this example is a ‘quarter’ of 5,
homeomorphic to a cylinder ‘x 1,
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Figure 5. Isometric folding ot a surface.

4. PROBLEMS AND EXAMPLES

In this final section. we discuss a variety of problems that arise from the

preceding results, and describe a number of illustrative examples.

EXAMPLE 1. For any smooth Riemannian manifolds X, Y and Z, and any

isometric foldings f (X, Y), g e (Y, Z), the composite map gof FX, Z).
Now 1, e .Y(X, X). Hence (X) = 3(X, X) is a semigroup with identity element

l under composition of maps, and contains the isometry group .9(X) of X as a

subsemigroup. In fact, with respect to the C°-topology, (X) is a topological

semigroup. As we have seen, in case M is compact and oriented, .(X) may be

partitioned into mutually exclusive subsets1(X), ._1(X) and 0(X) consisting

of isometric foldings of degree 1, —1 and 0 respectively. In all cases, (X) is

nonempty, since 1 e1(X). The sets 1(X) and ,(X) may be empty. Note

that, since the degree of a map f: X ‘— X is invariant under homotopy of f, each
of1(X) and.0(Xi is composed of entire path-components of (X). A natural

space to study is the orbit space .*(X) = (X)!( X) under the action of (X) on

0(X) by (say) left translations. This space may be very large if X is highly

symmetrical. For instance, :*(S’) is homeomorphic to an infinite cell-complex

consisting of exactly one cell of every even dimension, 0, 2, 4,..., as the reader

may easily check.

Figure 4 A singularity of order 3.
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So what does Robertson prove?

• Let       be a smooth (         ) compact, oriented n-manifold without boundary.

• Let                            be an isometric folding:  If      is any piecewise geodesic 
curve on       parameterized with respect to arc length, then so is          .

• This implies that     is continuous, but not necessarily differentiable.
Let            be the set of all singularities of    .   (This is the crease pattern.)

• Robertson then proves that            forms an n-dimensional cell-complex, 
which is the union of strata that are n-1, n-2, n-3, ..., 3, 2, 1-dimensional. 
(The n-dim cells are also strata, but they’re not part of            .)
Also, the number of such strata is finite.
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So what does Robertson prove?

• Each of the strata of              is isometrically immersed in              as a 
geodesic submanifold of        .

• Thus for almost all                       we have                                               where 
each                                  .

• For each n-dimensional stratum S of             , call S positive or negative 
depending on whether      is orientation-preserving or not on S.

• If     points of                 are positive and       are negative, then we have 
that                                  .  
(The degree of a map is, intuitively, the number of times       wraps         
around              .)
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So what does Robertson prove?

• Now, still working with an n-manifold       , we define:
     = the n-dimensional volume of      .
     = the n-volume of the positive n-dim strata.
     = the n-volume of the negative n-dim strata.
     = the n-volume of             .                                  (So                               .)

• Robertson’s Theorem:  Let                           be an isometric folding and 
let                       .    
                                Then                                   .

Proof:  Since          counts the volume of      , summing all the (signed) layers 
in             , we have 

which gives the desired result.
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So what?

• Take a vertex in a flat origami crease pattern, and draw a circle of radius 1 
around it (rescaling your c.p. if necessary).

The boundary of your circle is the 1-manifold      , and it folds isometrically 
into       . 

• The 1-volumes         will be the angles        for    odd, and         for     even.

• Also,                        here, so                                   becomes
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• Corollary to Robertson:  If      is an isometric folding (in any dimension) that 
is not surjective (onto), then                      .

• Proof:  If     is not surjective, then              has boundary in the range.  For any 
point                        near such boundary, the preimage                 will contain 
an even number of points, half positive and half negative.  Thus  
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Wait, how to we know that              ?

• Corollary 2 to Robertson:  If                             is an isometric folding, then 
                      iff                          and                              iff                      .

• Proof:  Assume              .  Let                 where                       and                   
Let                      .

If                       then      is not surjective, so                        by Corollary 1.

And if                       then

so     is surjective.  



Wait, how to we know that              ?

• Corollary 2 to Robertson:  If                             is an isometric folding, then 
                      iff                          and                              iff                      .

• Proof:  Assume              .  Let                 where                       and                   
Let                      .

On the other hand,  

                                            or                 and  

                                       



So Robertson proved the       direction of 
Kawasaki’s Theorem

• Take a vertex in a flat origami crease pattern, and draw a circle of radius 1 
around it (rescaling your c.p. if necessary).

The boundary of your circle is the 1-manifold      , and it folds isometrically 
into       . 

• The 1-volumes         will be the angles        for    odd, and         for     even.

• Also,                        here, so                                   becomes
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• Suppose we “fold” a chunk of 3D space.  Our “crease lines” are parts of 
planes, and “folding” means reflecting space through those planes.
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dimensions?

• Suppose we “fold” a chunk of 3D space.  Our “crease lines” are parts of 
planes, and “folding” means reflecting space through those planes.

• Take one vertex in such a crease pattern and draw a sphere of radius 1 
around it.  Where the planes intersect this sphere will create a crease pattern 
on the 2-manifold       .
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What does Robertson’s Theorem say about other 
dimensions?

• Suppose we “fold” a chunk of 3D space.  Our “crease lines” are parts of 
planes, and “folding” means reflecting space through those planes.

• If our original 3D vertex “folds flat” then our crease pattern on        is an 
isometric folding                           . 

• Robertson’s Theorem says that

And here the volumes are the areas of the
spherical polygons.

• So 2-color these regions, and let                       be
the black region areas and                         be the white.
Then



Generalizing ... can cause problems

• Kawasaki’s Theorem (sufficiency part) does not generalize to larger crease 
patterns.
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Determining if a given crease pattern is flat-foldable is NP-hard (Bern & Hayes, 1996)



Generalizing ... can be cool

• Justin’s Theorem:  Given any flat origami model, let R be a simple, closed, 
vertex-avoiding curve drawn on the crease pattern that crosses creases c1, c2, 
c3, ..., c2n, in order.  Let                           be the angles between these crease 
lines (determined consistently), and let      and      be the number of mountain 
and valley creases among c1, ..., c2n.  Then
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Generalizing ... can be cool

• Justin’s Theorem:  Given any flat origami model, let R be a simple, closed, 
vertex-avoiding curve drawn on the crease pattern that crosses creases c1, c2, 
c3, ..., c2n, in order.  Let                           be the angles between these crease 
lines (determined consistently), and let      and      be the number of mountain 
and valley creases among c1, ..., c2n.  Then

• Example: The Flapping Bird
Here
so Justin says that

Checking, we see that
and                 , so
which works!
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Proving Justin’s Theorem

• Look at what happens to our closed curve after we fold the paper.
  



Proving Justin’s Theorem

• Look at what happens to our closed curve after we fold the paper.
  

• Following the image of the closed curve on our folded paper, it will turn around 
some number of of times.

So the turning of our image path                              .



Proving Justin’s Theorem

• Let’s keep better track of the total turning of the image curve by picking a 
better curve to begin with.
  

We approach each crease line perpendicular to it.
If we make our curve cross each crease line while tangent to it (at an inflection 
point), then after it is folded we will have a  180° turn.

What’s more, if we do this right then we can have each        crease turn 180° 
and each        crease turn   -180°!
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Proving Justin’s Theorem

• Some examples:

So the total turning of the image curve 

which should be congruent to                          .

Yes, it is!



Proving Justin’s Theorem

• Changing some of the mountains and valleys:

Here the total turning of the image curve is 
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Proving Justin’s Theorem

• Finally, the proof is that we have:

add to this the fact that

to get

or

Ditto for the other angles.



Another way to prove Justin?

• Use the Gauss-Bonnet Theorem!
Let       be a compact 2-D manifold (i.e., surface) with boundary           .  Let      
be the Gaussian curvature of      and       the geodesic curvature of         .  Then

where              is the Euler characteristic of       .



Another way to prove Justin?

• Use the Gauss-Bonnet Theorem!
Let       be a compact 2-D manifold (i.e., surface) with boundary           .  Let      
be the Gaussian curvature of      and       the geodesic curvature of         .  Then

where              is the Euler characteristic of       .



Another way to prove Justin?

• Use the Gauss-Bonnet Theorem!
Let       be a compact 2-D manifold (i.e., surface) with boundary           .  Let      
be the Gaussian curvature of      and       the geodesic curvature of         .  Then

where              is the Euler characteristic of       .

For origami, we have                   because the paper is flat!



Another way to prove Justin?

• Use the Gauss-Bonnet Theorem!
Let       be a compact 2-D manifold (i.e., surface) with boundary           .  Let      
be the Gaussian curvature of      and       the geodesic curvature of         .  Then

where              is the Euler characteristic of       .

For origami, we have                   because the paper is flat!

Let’s let        be the region of paper inside our curve, after the paper is folded!   
(That is,        is homeomorphic to a disc (a disc folded up).)

Then                       .
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Another way to prove Justin?

• Use the Gauss-Bonnet Theorem!
Let       be a compact 2-D manifold (i.e., surface) with boundary           .  Let      
be the Gaussian curvature of      and       the geodesic curvature of         .  Then

where              is the Euler characteristic of       .

So for our manifold we have:

Now,         measures the curvature of          at each point along the curve.

Between two creases     and         we have                   or                       .

At every mountain crease we have                     .

At every valley crease we have                 .



A weird idea I’ve been having...

• Origami tessellations have become more popular over the past 5 years.
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A weird idea I’ve been having...

• Could we make an origami tessellation on a sphere?

• Let        be a sphere with a given radius.  If                            were an isometric 
folding whose crease pattern was a tessellation, then it would be a surjection, 
and would have                          .  Robertson’s Corollary 2 then tells us that   
                    ,  so this is impossible.

• So what if     mapped to a sphere with a smaller radius?
Impossible!  You can’t take a spherical polygon and put it onto a sphere with 
different radius and still have the sides be geodesics, and this would apply to 
any polygon of the crease pattern.
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A weird idea I’ve been having...

• Could we make an origami tessellation on a sphere?

• What if our spherical paper was not the whole sphere, but just part of one, 
like a hemisphere?
Now you’re talking crazy.  Any such crease pattern that would still qualify as 
an origami tessellation would have to tile the sphere.  If the hemisphere could 
successfully fold, then so should the whole sphere!

Note:  This is not a rigorous argument!  Perhaps the boundary of the 
hemisphere could absorb what’s going wrong?
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A weird idea I’ve been having...

• Could we make an origami tessellation on a sphere?

• What if our spherical paper was not the whole sphere, but just part of one, 
like a hemisphere?
Still, I haven’t been able to make one yet.

Gauss-Bonnet, anyone?

• What about origami tessellations on hyperbolic paper?
Tom conjectures:  No.  But who knows?



Thank you!
thull@wnec.edu
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