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What is a flat origami?

e An origami model whose finished result can be pressed in a book without
crumpling or adding new creases.

¢ Implies that all creases are straight lines.

e All creases are either mountains

e Examples:

Traditional flapping

bird (crane) Jun Maekawa’s Devil




Flat vertex folds

¢ |ooking at a single vertex in a flat origami crease pattern.
e The vertex is in the paper’s interior (not on the boundary of the paper).

e Maekawa’s Theorem: The difference between the number of mountain and
valley creases in a flat vertex fold is always two. (|M -V |=2)

a (flat) polygon
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Flat vertex folds

¢ |ooking at a single vertex in a flat origami crease pattern.
e The vertex is in the paper’s interior (not on the boundary of the paper).

e Maekawa’s Theorem: The difference between the number of mountain and
valley creases in a flat vertex fold is always two. (|M -V |=2)

[S—

The monorail rotates 180° at each M and -180° at each V.
Thus 180 M - 180V = 360,
or M-V =2.




Flat vertex folds

o Kawasaki’s Theorem: A collection of creases meeting at a vertex are flat-
foldable if and only if the sum of the alternate angles around the vertex is .

Proof of =: Walk around the vertex, starting at a crease on the flat-folded object.

So... O1—02+03—04+...—0en=0
add to this 01+ 2+ O3+ Ol4 + ... + Olen = 2TT
and you get 201 + 203 + ... + 202n-1 = 2TT
thatis, X1+ X3 + ... + Xon-1 =TI




History of these Theorems

o Kawasaki & Maekawa discovered these in the early 1980s.
Reference: Top Origami by Kasahara & Takahama, 1985 (Japanese version of
Origami for the Connoisseur).

¢ Justin discovered both of these in the 1980s as well.
Reference: British Origami Magazine, 1986.
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e Also, it’s not clear if Kawasaki originally saw the sufficiency direction of his
Theorem, although Justin clearly did.

e Other people, like Huffman (1976) and Husimi (1979) discovered the degree 4
case (only) of Kawasaki.




History of these Theorems

o Kawasaki & Maekawa discovered these in the early 1980s.
Reference: Top Origami by Kasahara & Takahama, 1985 (Japanese version of
Origami for the Connoisseur).

¢ Justin discovered both of these in the 1980s as well.
Reference: British Origami Magazine, 1986.

e Also, it’s not clear if Kawasaki originally saw the sufficiency direction of his
Theorem, although Justin clearly did.

e Other people, like Huffman (1976) and Husimi (1979) discovered the degree 4
case (only) of Kawasaki.

e However, in a 1977 paper, Stewart A. Robertson (Univ. of Southampton, UK)
discovered and proved the full necessary direction of Kawasaki, and more!
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Isometric folding of Riemannian manifolds

S. A. Robertson
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SYNOPSIS

When a sheet of paper is crumpled in the hands and then crushed flat against a desk-top, the pattern
of creases so formed is governed by certain simple rules. These rules generalize to theorems on folding
Riemannian manifolds isometrically into one another. The most interesting results apply to the case in
which domain and codomain have the same dimension. The main technique of proof combines the
notion of volume with Hopf's concept of the degree of a map.

The ideas in this paper are abstracted from a study of the following familiar
actions. Suppose that a plane sheet of paper is crumpled gently in the hands, and
then is crushed flat against a desk top. The effect is to criss-cross the sheet with a
pattern of creases, which persist even when the sheet is unfolded and smoothed
out again to its original planar form. At first sight, the pattern may seem random
and chaotic. However, a closer inspection will lead to the following observations.

First of all, the creases appear to be composed of straight line segments.
Secondly, if p is the end-point of such a segment, then the total number of
crease-segments that end at p is even. (In fact, this number is usually four.)
Thirdly, the sum of alternate angles between creases at each such point p is equal
to .

This physical process can be modelled mathematically as follows. Let us replace
both the sheet of paper and the desk-top by the Eudlidean plane R?, equipped
with its standard flat Riemannian tensorfield. We model the crumpling and
crushing process by a map f: R®— R that sends each piecewise-straight path in
R? to a piecewise-straight path of the same length.

More generally, consider two C™ Riemannian manifolds M and N, of dimen-

f:M-> N is said to be an isometric

- v/ 3 2 [} ] (]




280 S. A. Robertson
CoroLiLary 3. If fe F(M,N) and deg f=0, then V,=V_ =;VzV,.
CoroLLary 4. If fe F(M, N) and f is not surjective, then deg f=0
CoroLLary 5. If fe F(M, M), then degf=4 or degf==x1 according as
XH#D or Y(D)=D.
Proof. We can assume without loss of generality that V=1. Hence V,=aq,
where 0=a=<1and V_=1-aq. Let deg f = k. Then
Z(f);ﬁQj<::>0<a<1¢:—l<xvf<1®—1<x<1®x=0,

and
YH=3S0=a or l=a and V=1
@k=2a-1=-1 or 1.

CoroLLARY 6. Let fe F(M, N). Then for all xeM, f :S(x, u(x)—
S(f(x), u(x)) has degree 0 if xe€2(f) and had degree +1 otherwise.

Proof. This is essentially a special case of Corollary 5, although S(x, u£(x)) and
S(f(x), pu(x)) are distinct manifolds.

3. SURFACES

The results of §2 take a particularly simple form in case M is a surface (g=2).
Putting Corollary 2 of §1 together with Theorem 4 and its corollaries, we obtain
the following theorem for isometric folding of surfaces.

TureorRem 5. Let fe F(M, N), where both M and N are smooth Riemannian
2-manifolds. Then for each x € Y(f), the singularities of f near x form the images of
an even number 2r of geodesic rays emanating from x, making alternate angles

al}Bly-":aan

where

r

r
& = Z B = .
1 i=1

T

We call the number r the order of the singularity x.

The set of singularities Y(f) of an isometric folding of a smooth Riemannian
surface M into another N is therefore a graph on M, satisfying the angle
conditions of Theorem 5. Moreover, in case M is compact and both M and N are
oriented, the set Y (f) must partition M in accordance with the area conditions of
Theorem 4. Note that, by Theorem 5, every vertex of the graph Y (f) has even
valency. Of course Y(f) need not be connected, and may have components
homeomorphic to a circle and having no vertices.

Figure 5 shows the positive (shaded) and negative (unshaded) 2-strata into
which a double torus § could be partitioned by the singularities of an isometric
folding f of S into itself. The image of f in this example is a ‘quarter’ of S,
homeomorphic to a cylinder §' x I,




3. SURFACEsS

The results of §2 take a particularly simple form in case M is a surface (g =?2).

Putting Corollary 2 of §1 together with Theorem 4 and its corollaries, we obtain
the following theorem for isometric folding of surfaces.

THEOREM 5. Let fe F(M, N), where both M and N are smooth Riemannian
2-manifolds. Then for each x € Y(f), the singularities of f near x form the images of
an even number 2r of geodesic rays emanating from x, making alternate angles

al:Bl?"'?anBﬂ-

where

r r
Z a; = Z B = .
i=1 i=1

We call the number r the order of the singularity x.
The set of singularities Y'(f) of an isometric foldir

At Ag+ Xy = B+ Ra+By =T

Figure 4. A singularity of order 3.
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SO what does Robertson prove?

e Let M be a smooth ((('°°) compact, oriented n-manifold without boundary.

o Let f : M — M be an isometric folding: If Y is any piecewise geodesic
curve on V] parameterized with respect to arc length, then so is f ( )

¢ This implies that f IS continuous, but not necessarily differentiable.
Let E(f) be the set of all singularities of f (This is the crease pattern.)

* Robertson then proves that E(f) forms an n-dimensional cell-complex,
which is the union of strata that are n-1, n-2, n-3, ..., 3, 2, 1-dimensional.
(The n-dim cells are also strata, but they’re not part of Z(f) )

Also, the number of such strata is finite.




SO what does Robertson prove?

e Each of the strata of 2( f) is isometrically immersed in f (M ) as a
geodesic submanifold of M .

e Thus for almost all ¥ € .)f(M) we have f_l(y) — {xla "'ax’u} where

eachz; € M — X(f
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e For each n-dimensional stratum S of f (M ) call S positive or negative
depending on whether f IS orientation-preserving or not on S.




SO what does Robertson prove?

* Each of the strata of E(f) Is isometrically immersed in f(M) as a
geodesic submanifold of M .

e Thus for almost all ¥ € {(M) we have f_l(y) — {xla "'ax’u} where

eachz; € M — X(f

e For each n-dimensional stratum S of f (M ) call S positive or negative
depending on whether f IS orientation-preserving or not on S.

e If A points of f_l (y) are positive and U are negative, then we have
that deg f = A — 1 .
(The degree of a map is, intuitively, the number of times f wraps M

around f(M) )




SO what does Robertson prove?

e Now, still working with an n-manifold A/, we define:
he n-dimensional volume of M.

V =
V_|_=t

ne N-vo
ne N-vo

ne N-VO

ume of the positive n-dim strata.
ume of the negative n-dim strata.

ume of f(M). SoV =V, +V_)



SO what does Robertson prove?

e Now, still working with an n-manifold A/, we define:
= the n-dimensional volume of M.

ne n-volume of the positive n-dim strata.

ne n-volume of the negative n-dim strata.

ne n-volume of f(M). SoV =V, +V_)

e Robertson’s Theorem: Let f : M — M be an isometric folding and

etdeg f = k.
Then V4 = V_ + kV;.




SO what does Robertson prove?

e Now, still working with an n-manifold A/, we define:
V' = the n-dimensional volume of M.

ne n-volume of the positive n-dim strata.

ne n-volume of the negative n-dim strata.

ne n-volume of f(M). SoV =V, +V_)

e Robertson’s Theorem: Let f : M — M be an isometric folding and

etdeg f = k.
Then V4 = V_ + kV;.

Proof: Since k¢ counts the volume of V¢, summing all the (signed) layers

inf(M),we have
kVe=V,—-V_

which gives the desired result.




SO what?

e Take a vertex in a flat origami crease pattern, and draw a circle of radius 1
around it (rescaling your c.p. if necessary).

: f
0% o

3 v

The tigundary of your circle is the 1-manifold Sl, and it folds isometrically
into O1.




SO what?

e Take a vertex in a flat origami crease pattern, and draw a circle of radius 1
around it (rescaling your c.p. if necessary).

: f
0% o

3 v

The tigundary of your circle is the 1-manifold Sl, and it folds isometrically
into O1.

e The 1-volumes V+ will be the angles &; for ¢ odd, and V_ for ¢ even.
e Also, deg f = 0 here,so V. = V_ + kV¢ becomes
O] T O3 T Qop_1 = 0o T+ Qg 1 T Qoy




Wait, how to we know that deg f =07

e Corollary to Robertson: If f is an isometric folding (in any dimension) that
is not surjective (onto), then deg f = 0.




Wait, how to we know that deg f =07

e Corollary to Robertson: If f is an isometric folding (in any dimension) that
is not surjective (onto), then deg f = 0.

* Proof: If f IS not surjective, then f(M) has boundary in the range. For any
point ¥y € f (M) near such boundary, the preimage f~* () will contain
an even number of points, half positive and half negative. Thus

deg f=\—p=0
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e Corollary 2 to Robertson: If f : M — M is an isometric folding, then
deg f=0iff X(f)#0 and deg f==x1 iff X(f) = 0.
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Wait, how to we know that deg f =07

e Corollary 2 to Robertson: If f : M — M is an isometric folding, then
deg f=0iff X(f)#0 and deg f==x1 iff X(f) = 0.

* Proof: AssumeV = 1. LetVy = awhere) <ag<ladV_=1—a
Letdeg f = k.

If Z(f) ;é () then f is not surjective, so deg f = (0 by Corollary 1.

And ifdegf:() then i
V+—V_:ka:0:>V+:V_:§V>Vf

SO f IS surjective.




Wait, how to we know that deg f =07

e Corollary 2 to Robertson: If f : M — M is an isometric folding, then
deg f=0iff X(f)#0 and deg f==x1 iff X(f) = 0.

* Proof: AssumeV = 1. LetVy = awhere) <ag<ladV_=1—a
Letdeg f = k.

On the other hand,

Y(f) =0 (a=0o0ra=1)ad V=1
Sk=V, —-V_=2a—-1==1




SO

Robertson proved the = direction of

Kawasaki’s Theorem

e Take a vertex in a flat origami crease pattern, and draw a circle of radius 1
around it (rescaling your c.p. if necessary).

: f
0% o

3 v

The tigundary of your circle is the 1-manifold Sl, and it folds isometrically
into O1.

e The 1-volumes V+ will be the angles &; for ¢ odd, and V_ for ¢ even.
e Also, deg f = 0 here,so V. = V_ + kV¢ becomes

]+ Q3+ Qg1 = Qg+ 04+ 1 Qop



What does Robertson’s Theorem say about other
dimensions”?

e Suppose we “fold” a chunk of 3D space. Our “crease lines” are parts of
planes, and “folding” means reflecting space through those planes.

AT 7




What does Robertson’s Theorem say about other
dimensions”?

e Suppose we “fold” a chunk of 3D space. Our “crease lines” are parts of
planes, and “folding” means reflecting space through those planes.

“

e Take one vertex in such a crease pattern and draw a sphere of radius 1
around it. Where the planes intersect this sphere will create a crease pattern
on the 2-manifold S5.




What does Robertson’s Theorem say about other
dimensions?

e Suppose we “fold” a chunk of 3D space. Our “crease lines” are parts of
planes, and “folding” means reflecting space through those planes.

e |f our original 3D vertex “folds flat” then our crease pattern on Sg IS an
isometric folding f : So — S .

e Robertson’s Theorem says that
Vi —V_=kV; =0

And here the volumes are the areas of the
spherical polygons.




What does Robertson’s Theorem say about other
dimensions?

e Suppose we “fold” a chunk of 3D space. Our “crease lines” are parts of
planes, and “folding” means reflecting space through those planes.

e |f our original 3D vertex “folds flat” then our crease pattern on Sg IS an
isometric folding f : So — S .

e Robertson’s Theorem says that
Vi —V_=kV; =0

And here the volumes are the areas of the
spherical polygons.

e So 2-color these regions, and let B1, ..., By be
the black region areas and W1, ..., Wk be the white.

Then ZBzZZWz -




Generalizing ... can cause problems

e Kawasaki’s Theorem (sufficiency part) does not generalize to larger crease
patterns.




Generalizing ... can cause problems

e Kawasaki’s Theorem (sufficiency part) does not generalize to larger crease
patterns.

Determining if a given crease pattern is flat-foldable is NP-hard (Bern & Hayes, 1996)




Generalizing ... can be cool

¢ Justin’s Theorem: Given any flat origami model, let R be a simple, closed,
vertex-avoiding curve drawn on the crease pattern that crosses creases c1, Co,

Cs, ..., Con, In Order. Let X1, Y9, ..., &9y be the angles between these crease

lines (determined consistently), and let M and V' be the number of mountain
and valley creases among c1, ..., Con. Then Vv
Q] + Q3+ -+ Qap—1 = Q2 T Qg+ -+ Qap = 5 mod 27
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Generalizing ... can be cool

¢ Justin’s Theorem: Given any flat origami model, let R be a simple, closed,
vertex-avoiding curve drawn on the crease pattern that crosses creases c1, Co,

Cs, ..., Con, In Order. Let X1, Y9, ..., &9y be the angles between these crease

lines (determined consistently), and let M and V' be the number of mountain
and valley creases among c1, ..., Con. Then Vv
Q] + Q3+ -+ Qap—1 = Q2 T Qg+ -+ Qap = 5 mod 27

e Example: The Flapping Bird

Here oty + a3+ ---+ Qg =
so Justin says that

M-V
2

Checking, we see that M = &
andV =2 ,so M —V =6

which works!

=1 mod 2




Proving Justin’s Theorem

* ook at what happens to our closed curve after we fold the paper.




Proving Justin’s Theorem

* ook at what happens to our closed curve after we fold the paper.

¢ Following the image of the closed curve on our folded paper, it will turn around
some number of of times.

So the turning of our image path = () mod 2.




Proving Justin’s Theorem

o | et’s keep better track of the total turning of the image curve by picking a
better curve to begin with.

/ /

We approach each crease line perpendicular to it.

If we make our curve cross each crease line while tangent to it (at an inflection
point), then after it is folded we will have a 180° turn.

What’s more, if we do this right then we can have each M crease turn 180°
and each V' crease turn -180°!




e Some examples:

||
Y R B
I

Proving Justin’s Theorem

M, 180°

M, 180°
ﬁ

<
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b

M, 180° M, 180°

M, 180°
M, 180°




e Some examples:

||
S E U
|

Proving Justin’s Theorem

M, 180°

M, 180°
ﬁ

So the total turning of the image curve
=1 —ap+--—ag+ Mmr—Vm
which should be congruentto ) mod 27 .

S

s

b

M, 180° M, 180°

M, 180°
M, 180°




Proving Justin’s Theorem

e Some examples:

| < «

M, 180°

- _|_ — _|_ — M,180°A /6

Sl RN

M, 180° M, 180°

So the total turning of the image curve
=1 —ap+--—ag+ Mmr—Vm
which should be congruentto ) mod 27 .

=90° —-90°+0—-90°4+90° +6 - 180°
= 327

Yes, it is!




Proving Justin’s Theorem

e Changing some of the mountains and valleys:

Here the total turning of the image curve is

=1 —ap+--—ag+ Mmr—Vm
=04+4-m1—2-71=2r=0 mod 27




Proving Justin’s Theorem

e Finally, the proof is that we have:
a1 — oo+ —ag, + Mm—Vmr =0 mod 2n




Proving Justin’s Theorem

e Finally, the proof is that we have:
a1 — oo+ —ag, + Mm—Vmr =0 mod 2n
add to this the fact that
o1 t+oayt+as+ayg+ -+ @y, =0 mod 27

to get




Proving Justin’s Theorem

e Finally, the proof is that we have:
a1 — oo+ —ag, + Mm—Vmr =0 mod 2n
add to this the fact that
(141+(1{2-|-Oé3—|-064—|-"'—|—062n:0 mod 27

to get
2001 + 2ai3 + 205 + - - + 200,71 = (M — V)1 mod 27

or

M-V
al—l—a3—|—a5—|—--°—l—a2n_1:( 5 )W mod 27

Ditto for the other angles.




Another way to prove Justin®

e Use the Gauss-Bonnet Theorem!
Let M be a compact 2-D manifold (i.e., surface) with boundary OM . Let K
be the Gaussian curvature of M and kg the geodesic curvature of O M. Then

// KdA—I—/ kg ds = 2wy (M)
M OM

where (M ) is the Euler characteristic of M .
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Another way to prove Justin®

e Use the Gauss-Bonnet Theorem!

Let M be a compact 2-D manifold (i.e., surface) with boundary OM . Let K
be the Gaussian curvature of M and kg the geodesic curvature of O M. Then

// KdA—I—/ kg ds = 2wy (M)
M OM

where (M ) is the Euler characteristic of M .

For origami, we have /X = () because the paper is flat!

Let’s let M be the region of paper inside our curve, after the paper is folded!
(That is, M is homeomorphic to a disc (a disc folded up).)

Then X(M) =1
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Another way to prove Justin®

¢ Use the Gauss-Bonnet Theorem!
Let M be a compact 2-D manifold (i.e., surface) with boundary OM . Let K
be the Gaussian curvature of M and kg the geodesic curvature of O M. Then

// KdA—I—/ kg ds = 2wy (M)
M OM

where (M ) is the Euler characteristic of M .

So for our manifold we have: / kg ds = 2

oM
Now, k‘g measures the curvature of 0 M at each point along the curve.
Between two creases [; and ;1 we have k; = ; or kg = —qy; .
At every mountain crease we have kK, = —7r .

At every valley crease we have kg, = 7.




A welrd idea |'ve been having...

e Origami tessellations have become more popular over the past 5 years.
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A weird idea |I've been having...

e Could we make an origami tessellation on a sphere?
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A weird idea |I've been having...

e Could we make an origami tessellation on a sphere?

e Let M be a sphere with a given radius. If f : M — M were an isometric
folding whose crease pattern was a tessellation, then it would be a surjection,

and would have deg f — 1. Robertson’s Corollary 2 then tells us that
Y(f) = (), so thisis impossible.

e SO0 what if f mapped to a sphere with a smaller radius?

Impossible! You can’t take a spherical polygon and put it onto a sphere with
different radius and still have the sides be geodesics, and this would apply to
any polygon of the crease pattern.
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e \What if our spherical paper was not the whole sphere, but just part of one,
like a hemisphere?
Now you’re talking crazy. Any such crease pattern that would still qualify as
an origami tessellation would have to tile the sphere. If the hemisphere could
successfully fold, then so should the whole sphere!

Note: This is not a rigorous argument! Perhaps the boundary of the
hemisphere could absorb what’s going wrong?
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A weird idea |I've been having...

e Could we make an origami tessellation on a sphere?

e \What if our spherical paper was not the whole sphere, but just part of one,
like a hemisphere?

Still, | haven’t been able to make one yet.

Gauss-Bonnet, anyone?

/] KdA—I—] kg ds = 2mx (M)
M OM

e \What about origami tessellations on hyperbolic paper?
Tom conjectures: No. But who knows?




Nk you!

@wnec.edu
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