Origami and Constructible Numbers (and some other stuff)

Tom Hull, Merrimack College thull@merrimack.edu

Straightedge and Compass basic operations

- Given two points P_{1} and P_{2}, we can draw the line $P_{1} P_{2}$.
- Given a point P and a line segment of length r, we can draw a circle centered at P with radius r.
- We can locate intersection points, if they exist, between lines and circles.

What are the Basic Operations of Origami?

What are the Basic Operations of Origami?

- Given two points P_{1} and P_{2}, we can fold the crease line $P_{1} P_{2}$.
- Given two points P_{1} and P_{2}, we can make a crease that puts P_{1} onto P_{2}.
- Given two lines L_{1} and L_{2}, we can make a crease that puts L_{1} onto L_{2}.
- and so on.

The craziest BOO

The most important move in origami (probably)

Origami angle trisection

Origami angle trisection

credit: Hisashi Abe, 1980

Origami angle trisection

The deal is: this origami move is actually solving a cubic equation.

Origami angle trisection

The deal is: this origami move is actually solving a cubic equation.
(Finding a simultaneous tangent to two parabolas.)

Origami can solve any cubic equation

Italian mathematician Margherita Beloch proved this in the 1930s. Here's her proof:

Consider the following construction problem:
Let A and B be two points and r and s two lines.
We want to construct a square that has A and B on opposite sides (or extensions) and has two adjacent
 vertices lying on the lines r and s.

Origami can solve any cubic equation

 We can make this square construction with origami.Let d_{1} be a line parallel to r, where $\operatorname{dist}(A, r)=\operatorname{dist}\left(r, d_{1}\right)$. Let d_{2} be a line parallel to s , where $\operatorname{dist}(B, s)=\operatorname{dist}\left(s, d_{2}\right)$.

Then fold $A \rightarrow d_{1}$ and $B \rightarrow d_{2}$ simultaneously. The crease gives the top of the square (XY).

Origami can solve any cubic equation

 We can make this square construction with origami.Let d_{1} be a line parallel to r, where $\operatorname{dist}(A, r)=\operatorname{dist}\left(r, d_{1}\right)$. Let d_{2} be a line parallel to s , where $\operatorname{dist}(B, s)=\operatorname{dist}\left(s, d_{2}\right)$.

Then fold $A \rightarrow d_{1}$ and $B \rightarrow d_{2}$ simultaneously. The crease gives the top of the square (XY).

Origami can solve any cubic equation

Why is this like solving a cubic equation? Beloch realized that this is just an application of Lill's method for finding real roots of a polynomial!

Origami can solve any cubic equation

Lill's geometric method for finding real roots of any polynomial:
$a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{2} x^{2}+a_{1} x+a_{0}=0$
Start at O, go a_{n}, turn 90°, go a_{n-1}, turn 90°, etc, ending at T.

Then shoot from O with an angle θ, bouncing off the walls at right angles, to hit T . Then $x=-\tan \theta$ is a root.
(Lill, 1867)

Origami can solve any cubic equation

Why does Lill's method work?
$P_{n} Q_{n-1} / a_{n}=\tan \theta=-x$
So $P_{n} Q_{n-1}=-a_{n} x$

(Lill, 1867)

Origami can solve any cubic equation

Why does Lill's method work?
$P_{n} Q_{n-1} / a_{n}=\tan \theta=-x$
So $P_{n} Q_{n-1}=-a_{n} x$
$P_{n-1} Q_{n-2} /\left(a_{n-1}-P_{n} Q_{n-1}\right)=-x$
So $P_{n-1} Q_{n-2}=-x\left(a_{n-1}+a_{n} x\right)$

(Lill, 1867)

Origami can solve any cubic equation

Why does Lill's method work?
$P_{n} Q_{n-1} / a_{n}=\tan \theta=-x$
So $P_{n} Q_{n-1}=-a_{n} x$
$P_{n-1} Q_{n-2} /\left(a_{n-1}-P_{n} Q_{n-1}\right)=-x$
So $P_{n-1} Q_{n-2}=-x\left(a_{n-1}+a_{n} x\right)$
Similarly,
$P_{n-2} Q_{n-3}=-x\left(a_{n-2}+x\left(a_{n-1}+a_{n} x\right)\right)$
Continuing...

$a_{0}=P_{1} T=-a_{1} x-a_{2} x^{2}-\ldots-a_{n-1} x^{n-1}-a_{n} x^{n}$
or, $a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{2} x^{2}+a_{1} x+a_{0}=0$.
(Lill, 1867)

Origami can solve any cubic equation

Why is this like solving a cubic equation?
Finding our "construction square" is the same as "shooting the turtle" in the $n=3$ case!

Origami can solve any cubic equation
Let's find the roots of the cubic $z^{3}-7 z-6$.

Origami can solve any cubic equation

Let's find the roots of the cubic $z^{3}-7 z-6$.

Origami can solve any cubic equation

 Let's find the roots of the cubic $z^{3}-7 z-6$.

The Algebraic Perspective

The set of constructible numbers under SE\&C is the smallest subfield of \mathbb{C} (complex \#s) that is closed under square roots. or...
$\alpha \in \mathbb{C}$ is SE\&C constructible if and only if $[\mathbb{Q}(\alpha): \mathbb{Q}]=2^{n}$ for some $n \geq 0$. In other words, α is algebraic over \mathbb{Q} and the degree if its minimal polynomial over \mathbb{Q} is a power of 2 .

The Algebraic Perspective

The set of constructible numbers under SE\&C is the smallest subfield of \mathbb{C} (complex \#s) that is closed under square roots. or...
$\alpha \in \mathbb{C}$ is SE\&C constructible if and only if $[\mathbb{Q}(\alpha): \mathbb{Q}]=2^{n}$ for some $n \geq 0$. In other words, α is algebraic over \mathbb{Q} and the degree if its minimal polynomial over \mathbb{Q} is a power of 2 .

Origami version:
Let $\alpha \in \mathbb{C}$ be algebraic over \mathbb{Q}, and let $L \supset \mathbb{Q}$ be the splitting field of the minimal polynomial of α over \mathbb{Q}. Then α is origami constructible from our list of BOOs if and only if $[L: \mathbb{Q}]=2^{a} 3^{b}$ for some integers $a, b \geq 0$.

Oh, but it's worse than that...

Robert Lang's angle quintisection.

