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Straightedge and Compass 
basic operations

Given two points P1 and P2, we can draw the 
line P1P2.

Given a point P and a line segment of length 
r, we can draw a circle centered at P with 
radius r.

We can locate intersection points, if they 
exist, between lines and circles.



What are the Basic 
Operations of Origami?



What are the Basic 
Operations of Origami?
Given two points P1 and P2, we can fold the 
crease line P1P2.

Given two points P1 and P2, we can make a 
crease that puts P1 onto P2.

Given two lines L1 and L2, we can make a 
crease that puts L1 onto L2.

and so on.



The craziest BOO

L1 L2

P1 P2

The most important move 
in origami (probably)



Origami angle trisection
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Origami angle trisection
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Proof:

credit: Hisashi Abe, 1980



Origami angle trisection

L1 L2

P1 P2

The deal is:  this origami move is actually
solving a cubic equation.



Origami angle trisection

L1 L2

P1 P2

The deal is:  this origami move is actually
solving a cubic equation.

(Finding a simultaneous tangent
to two parabolas.)



Origami can solve any cubic equation
Italian mathematician Margherita Beloch proved 
this in the 1930s.  Here’s her proof:

Consider the following
construction problem:
Let A and B be two points
and r and s two lines.
We want to construct a
square that has A and B on
opposite sides (or extensions)
and has two adjacent 
vertices lying on the lines r and s.
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Origami can solve any cubic equation
We can make this square construction with 
origami.  
Let d1 be a line parallel
to r, where
dist(A, r) = dist(r, d1).
Let d2 be a line parallel
to s, where
dist(B, s) = dist(s, d2).

Then fold A -> d1 and
B -> d2 simultaneously. 
The crease gives the
top of the square (XY).
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Origami can solve any cubic equation
We can make this square construction with 
origami.  
Let d1 be a line parallel
to r, where
dist(A, r) = dist(r, d1).
Let d2 be a line parallel
to s, where
dist(B, s) = dist(s, d2).

Then fold A -> d1 and
B -> d2 simultaneously. 
The crease gives the
top of the square (XY).
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Origami can solve any cubic equation
Why is this like solving a cubic equation?  
Beloch realized that this is just an application 
of Lill’s method for finding real roots of a
polynomial!
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Lill’s geometric method for 
finding real roots of any 
polynomial:
anxn+an-1xn-1+...+a2x2+a1x+a0=0

Start at O, go an, turn 90°,
go an-1, turn 90°, etc, ending 
at T.

(Lill, 1867)

Then shoot from O with an angle θ, bouncing off 
the walls at right angles, to hit T.
Then x = -tan θ  is a root.

Origami can solve any cubic equation



Why does Lill’s method work? 
PnQn-1 /an = tan θ = -x
So PnQn-1 = -anx

(Lill, 1867)

Origami can solve any cubic equation
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Why does Lill’s method work? 
PnQn-1 /an = tan θ = -x
So PnQn-1 = -anx

Pn-1Qn-2 /(an-1-PnQn-1) = -x
So Pn-1Qn-2 = -x(an-1 + anx)

(Lill, 1867)

Origami can solve any cubic equation
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Why does Lill’s method work? 
PnQn-1 /an = tan θ = -x
So PnQn-1 = -anx

Pn-1Qn-2 /(an-1-PnQn-1) = -x
So Pn-1Qn-2 = -x(an-1 + anx)
Similarly,
Pn-2Qn-3 = -x(an-2+x(an-1+anx))
Continuing...

a0 = P1T = - a1x - a2x2 - ... - an-1xn-1 - anxn 
or,  anxn + an-1xn-1 + ... + a2x2 + a1x + a0 = 0.

(Lill, 1867)

Origami can solve any cubic equation
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Origami can solve any cubic equation
Why is this like solving a cubic equation?  

Finding our “construction square” is the same as 
“shooting the turtle” in
the n=3 case!
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Origami can solve any cubic equation
Let’s find the roots of the cubic z3 - 7z - 6.  



Origami can solve any cubic equation
Let’s find the roots of the cubic z3 - 7z - 6.  
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Origami can solve any cubic equation
Let’s find the roots of the cubic z3 - 7z - 6.  
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The Algebraic Perspective
The set of constructible numbers under SE&C is the smallest 
subfield of     (complex #s) that is closed under square roots.
or…
                 is SE&C constructible if and only if
for some         .  In other words,     is algebraic over     and 
the degree if its minimal polynomial over     is a power of   .

α ∈ C
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n ≥ 0 α
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The Algebraic Perspective
The set of constructible numbers under SE&C is the smallest 
subfield of     (complex #s) that is closed under square roots.
or…
                 is SE&C constructible if and only if
for some         .  In other words,     is algebraic over     and 
the degree if its minimal polynomial over     is a power of   .

Origami version:
Let          be algebraic over    , and let           be the 
splitting field of the minimal polynomial of    over    .  Then         
is origami constructible from our list of BOOs if and only if 
                     for some integers            .
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[Q(α) : Q] = 2n

n ≥ 0 α
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Q L ⊃ Q
αα

[L : Q] = 2a3b a, b ≥ 0



Oh, but it’s worse than that...

Robert Lang’s angle quintisection.

Angle

Quintisection
Designed by Robert J. Lang

Copyright ©2004.

All Rights Reserved.
1. Start with a long strip 1 unit high and 5–6 units long. Angle EAB

is the angle to be quintisected. Make a vertical crease about 1/3 unit

from the right side.

2. Fold line FG down to lie along edge AB.

3. Fold point F over to point A.

4. Fold and unfold. 5. Squash-fold on

the existing

creases.

5. Make a horizontal fold aligned with point C. 6. Fold point C to point A and unfold, making

a second longer horizontal crease.

7. Mountain-fold corner D behind.
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7. Here’s where it all happens. Fold edge AE down along

crease AJ. At the same time, fold the left flap up so that

point F touches crease HI at the same point that edge AE

does and point C touches crease AJ. You will have to adjust

both folds to make all the alignments happen at once.
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8. Here’s what it looks like folded. Yours may

not look exactly like this, depending on the angle

you used and the length of your strip. Unfold to

step 7.
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9. Bisect angle EAJ.
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10. Fold crease AK down to

AM and unfold.

D

A

E

B

G

C

F

I

J

K

L

M

11. Bisect angle LAM.
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12. Angle EAM is now divided into fifths.
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Angle quintisection is division of

an arbitrary angle into fifths. This

requires solution of an irreducible

quintic equation and thus is not

possible with the 7 Huzita-Hatori

axioms, each of which defines a

single fold by simultaneous

alignment of points and lines. By

permitting the simultaneous creation

of two or more folds that satisfy

various combinations of point/line

alignments, it is possible to solve

higher-order equations, as this

example illustrates.
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