
An Efficient Parallel Algorithm for the Solution of a

Tridiagonal Linear System of Equations

H A R O L D S . STONE

Stanford Universzty, Stanford, California

ABSTRACT. Tridiagonal linear systems of equations can be solved on conventional serial
machines in a time proportional to N, where N is the number of equations. The conventional
algorithms do not lend themselves directly to parallel computation on computers of the ILLIAC
IV class, in the sense that they appear to be inherently serial. An efficient parallel algorithm is
presented in which computation time grows as log2 N. The algorithm is based on recursive
doubling solutions of linear recurrence relations, and can be used to solve recurrence relations
of all orders.

KEY WORDS AND PHRASES: parallel computation, ILLIAC IV, linear equations, computer archi-
tecture, numerical analysis, LU decomposition, tridiagonal equations

CR CATEGORIES; 5.14, 6.22

1. Introduction

The trend in large scale high speed computers today clearly points to the use of
internal parallelism to obtain significant increases in speed. For example, the
ILLIAC IV computer can perform N simultaneous computations where N = 64, 128,
256, or 512. We expect tha t highly efficient computations performed on a computer
of the ILLIAC IV class will be executed N times faster than on a serial computer of
the same inherent speed. Actually, inefficiencies due to overhead and constraints on
data communication among processors will reduce the speed increase to kN where
k lies in the interval 0 _~ k _< 1. Efficient algorithms have k near unity.

Unfortunately, many parallel algorithms do not lend themselves to efficient
parallel computation. We can exhibit examples of algorithms for which computa-
tion time decreases rather slowly as we increase the number of processors, and for
some pathological examples the computation time is independent of the number of
processors. An efficient parallel algorithm has the property that computation speed
on a processor with N-fold parallelism is N times faster than computation on a
serial processor.

In this paper we examine the solution of tridiagonal systems of linear equations.
I t is well known that such systems can be solved using a conventional serial corn-

Copyright © 1973, Association for Computing Machinery, Inc General permission to repub-
lish, but not for profit, all or part of this material is granted, provided that reference is
made to this publication, to its date of issue, and to the fact that reprinting privileges were
granted by permission of the Association for Computing Machinery.
This work was supported by the NASA Ames Research Center, by the Joint Services Elec-
tronics Program under contract N-00014-67-A-0112-0044, and by the National Science Founda-
tion under grant G J-1180.
Author's address: Stanford University, Departments of Electrical Engineering and Computer
Science, ERL 416, Stanford, CA 94305.

Journal of the .As~aociation for Computing Machinery, Vol 20, No. 1, January 1973. pp. 27-38.

28 HAROLD S. STONE

puter in a time proportional to N where N is the number of equations. We present
an algorithm for solving the equations in a time proportional to log2 N by using a
computer with N-fold parallelism. Hence, for this problem the ratio of the computa-
tion speed of a parallel processor to that of a serial processor is proportional to
N/log2 N, since this is the inverse ratio of the computation times. As N grows
large, N/log2 N grows as N 1-~ for any e > 0, and therefore this algorithm asymptoti-
cally attains the N-fold speed increase that we require of efficient parallel algorithms.
A different parallel algorithm for this problem that exhibits a similar time behavior
has been developed by Buneman [1] and Buzbee et al. [2].

In Section 2, we state the problem and indicate conventional serial methods for
solution. These methods are inherently serial in that each computation depends on
the result of the immediately preceding computation. In Section 3 we show how to
perform a forward and backward sweep in log2 N steps when given the L U decompo-
sition of the original matrix. In Section IV we show how to obtain the L U decompo-
sition in logs N steps. This particular computation is of general interest because it is
an efficient method for evaluating partial fraction expansions and linear difference
equations in parallel.

2. Statement of the Problem

We wish to solve the tridiagonal system of equations

A x = b

where

di fl]
e~ d~ /2

A = e3 d3 f~ . ,oo
eN-~ dN-i 1~-1

e~ dN .J

In the remainder of this paper we assume that N is a power of 2, but this is not an
essential assumption.

There are a number of related methods for solving this system serially in a time
proportional to N. The parallel algorithm presented here is based upon one such
algorithm, the L U decomposition (cf. Forsythe and Moler, [4]). In this algorithm
we find two matrices, L and U, such that (i) LU = A; (li) L is a lower bidiagonal
matrix with l 's on its principal diagonal; (iii) U is an upper bidiagonal matrix.

When A is nonsingular, its L U decomposition is unique provided that L and U
satisfy the conditions given. In fact, it is easily shown that

l
ul fl]

U2 f2
U= u8 ff3

.o.

UAr-I fN-l

U~ .J

Journal of the Assocmtlon for Computing Machinery, Vol. 20, No, I, January 1973

A n E~cieent Parallel A lgor i thm for a Tridiagonal L inear Sys t em 29

where f~, 1 < i < N - 1, is the upper diagonal of A, and

Ul = d l , us = d s - (eJ~-l/U~-l)

The lower bidlagonal matrix, L, is then given by

L = m3 1

raN-1 1

mN 1

where

for i > 1. (1)

m2 = e2/dl ,
ms = e J (d~_l -- f i -2m~-l) for i > 2, (2)

= eJu,_~ for i > 2.

After computing L and U, it is relatively straightforward to solve the system of
equations. The solution is a two-step process.

Letting y = Ux, we have

A x = L U x = L y - - b .

The equation Ly = b is easily solved for y since

Yl = h i , Ys = b~ - m~y,_l f o r 2 ~ i~_ N. (3)

Then we solve Ux = y for x. This equation is solved by a backward sweep since

x~ = y~r/uN, x , = (y, - x i + ~ ,) / u ~ . (4)

Note that the recurrence formulas (1), (2), (3), and (4) constitute a complete
algorithm for the solution of Ax = b. Since each computation in this algorithm
depends on the results of the previous computation, the algorithm is satisfactory
for serial computation but quite unsatisfactory for parallel computation. In the
following sections we derive equivalent formulas that are well-suited for parallel
computation.

3. Parallel Evaluat ion of the Forward and Backward Sweeps

The model of a parallel processor tha t lies behind the development of these parallel
algorithms is based upon the IL~i~c IV computer. In this computer there are N
processors with independent memories, but only one instruction stream. All of the
processors operate synchronously, executing the same instruction on N different
operand pairs, where N can be 64, 128, 256, or 512. For added flexibility, there is a
mask associated with each processor tha t enables or disables the processor. Hence
if a processor's mask is on, the processor executes the current instruction; otherwise
the processor remains idle.

Data can be communicated among the processors in one of two ways. One datum
can be broadcast to all processors simultaneously, or a vector of N items can be
shifted cyclically among the processors. As an example of the latter case, suppose

Journal of the Assoclatxon for Computing Machinery, Vol 20, No, I, January 1973

30 H A R O L D S. S T O N E

tha t the vector b = (b~ ,b~ ,b3, • . . ,b~) is stored with b, in the i th processor. Then
the vector can be shifted j places cyclically so tha t b, is routed to processor (i + j)
mod N for all i.

In this section we shall show how to solve (3) by a technique called recursive
doubling. The idea is to rewrite (3) so that y2, is a function of y~. Thus in successive
iterations we can compute y l , y2, y4, ys, etc., and y~ can be computed in log2 N
iterations. Since (4) is of the same form as (3), the backward sweep can be done
using the same algorithm, and it also requires log2 N iterations.

To begin the derivation, we rewrite (3) in the form

y~ = b~, y~ = b~ + (-m ,)y ,_~ . (3')

This change is necessary because we shall make use of the associativity of addition.
Substituting for Y,-1 in (3') we find

y2 = b2 + (- m 2) . b l ,
y3 ffi b3 ++ (-ms) ' b~ -t- (- m 3) . (- m 2) . b l ,

y, = bj
(5)

j ~ l k~3+l

where a vacuous product of ink's is interpreted as the constant 1.
The last formula in (5) shows the explicit dependence of y, on each of the coeffi-

cients of m and b. Our goal is to derive a recurrence in which y:, is a function of y , .
To anticipate the answer, momentarily consider what happens when all of the com-
ponents of m are equal to - 1. In this case y, is the sum of the first i components of
b. Then if y,(b¢ ,bj-1, • • • ,bj-,+l) is defined to be the sum of b~ through b~-,+l,
we have

y2,(b2~,b2~-l, "'" ,bl) -- y,(b2,,b2~-I , " " ,be+l) + y i (b , ,b~- l , "'" ,bl) . (6)

Equation (6) holds for all i > 1. This recurrence has the recursive doubling form
that we seek, because it expresses Y2, in terms of two functions that are each half as
complex as y2, • Moreover, we can evaluate the terms in (6) in parallel because they
are computationally identical and differ only in the values of the arguments. For our
general solution we compute Y1, Y2, " '" , YN where each Y, is a function of i
components of b and m. We use Y, (j) as an abbreviation of the more cumbersome
notation Y~(b~, b~-l, . . . , b3- ,+l ,m~ ,m~-i, . . . ,m~_,+l). Tha t is, Y , (j) is a func-
tion of i consecutive components of b a n d m , with the j th component being the
highest component.

The following theorem establishes the relation we desire.
THEOREM 1. Let Y, (j) satisfy the recurrence relation

Y,+i(j) = Y i (j) + Y , (j - - 1) . (- - m 3) for i , j >_ 1 (7)

with the boundary conditions

Y , (j) = b, f o r j > 1,
Y,(j) -- 0 f o r j < O,
Y , (j) = 0 for i < O.

Journal of the Association for Computing Machinery, Vol. 20, No. 1, January 1973

An Efficient Parallel Algorithm for a Tridiagonal Linear System 31

Then
(a) for s > 1, Y, (j) satisfies the recurrence relation

Y,+~(J) = Y,(3) + Y,(J - s) h (-mk) for i _> 1, j > s; (8)
k=3--s-+-I

3 3

(b) Y,(j) = ~ Y~(k) I I (-m~) for i > j ~ 1; (9)
kffil n=k+l

(c) for i > j > 1, Y,(j) = y , , where y~ is thejth component of the unique solu-
tion of (3).

PROOF. To prove part (a), we use induction on s.
Basis step. By hypothesis, (8) holds for s = 1.
Induction step. We assume that (8) holds for all s in the interval 1 < s _< n -- 1,

and we show it holds for s = n.
From the induction hypothesis we have

Yi+, (j) = Y,-1 (j) + Y,+i (3 - n .-t- 1).

= Y . - , (j) "t- Y1 (j - n -+ 1) .

3

II (--m,)
k~ l - -n+2

J

II (--m,)
k--3--n+2

3

+ Y, (j -- n). I I (-mk) .
k = j - - n + l

But from the induction hypothesis it follows that
$

Yn(j) -- Yn-l(3) + Yi(j - n "-t- 1). I I
k~3--n+2

H e n c e

(- - m k) ,

Y,+,(J) = Y,(J) + Y,(3 - n).
J

II
k ~ 3 - - n + l

which is the same recurrence as (8) with s replaced by n. This proves par t (a).
To prove part (b), we use induction on i.
Basis step. By hypothesis, (9) holds for i = 1.
Induction step. We assume tha t (9) holds for all i in the interval 1 < i _< n - 1,

and we prove that it holds for i = n. Using (8) we have

Y, (j) = Yi(j) + Y , ~ - i (j - 1). (- -mj) .

Using the induction hypothesis to substitute for Y~_~ (j - 1) yields

'-']
Yl(k) I I (- -ms) "(--me) for 2 < j < n, Y"(J) = Y~(J) + L,~-i ~=k+l

3 3

= ~ Y l (k) IX (- m ,) for 2 < j < n. (10)
k u l s ~ k + l

The interval 2 _< j < n for which the equations above are valid arises from the appli-
cation of the induction hypothesis to Y~-i (j -- 1) for 1 < j -- 1 < n -- 1. Since
(10) has the same form as (9), it is only necessary to show the validity of (10) for

Journal of the Association for Computing Machinery, Vol. 20, No. I, January 1973

32 HAROLD S. STONE

j = 1 to complete the proof. From the theorem hypothesis,

Y,(1) -- Yi(1) + Y,_,(0) -- Y~(1).

Since the same result is obtained by setting j = i in (10), the interval in (10) may
be changed to i _< j < n. This proves part (b) of the theorem.

Part (c) is a direct consequence of the fact that with the boundary condition
Yi (j) -- be, (10) is identical to the solution to (3). This completes the proof of the
theorem.

COROLLARY.
3

Y2~(j) = Y~(3) + Y~(J -- i) . IX (- m k) for i , j > 1. (I1)
k=j--z+l

PROOF. The proof follows directly from part (a) of Theorem 1 by replacing s
by ~.

The corollary of Theorem 1 provides the recursive doubling algorithm for the
solution of (3). The product term in (11) appears to be difficult to evaluate because
the number of factors in the product doubles with each iteration. Fortunately, we
can also use recursive doubling to compute the product term.

Let M , (j) be defined to be
$

Me(j) = I I (-mk) for j _> i,
k~j--*+l
3

~= IX (--mk) for j < i. (12)
k=l

Then (11) can be rewritten as

Y~,(J) = Y,(3) + Y,(3 -- i) 'M~(3) for i , j > 1. (13)

The recursive doubling computation of M~ (j) is provided by the formula

M2,(3) = M , (j) . M , (3 - i) for i , j > 1 (14)

with the boundary conditions

Mi(j) = -me fo r j > 1,
Me(j) = 1 fo r j _< 0,
M , (j) = 1 for i < 0.

The parallel algorithm for the solution of (3) is simply the iterative application
of (13) and (14). It is given below in an ALGoLdike language. In the program,
when an interval of the form (1 _< j _< N) appears after a statement, that state-
ment is assumed to be executed simultaneously for all indices in the interval.

b e g i n
real array Y[I:N], M[2:N];
real array b[l :N] , m[2:N];
c o m m e n t Y and M are t he a r rays in which equa t ions (13) and (14) are e v a l u a t e d A r r a y s

b and m are the a r rays t h a t g ive the coefficients of (3) These a r rays m a y ut i l ize t h e s a m e
s to rage space as t he a r rays Y and M, respec t ive ly ,

imt ia l ize :
Y[j] :-= b[3], (1 < 3 --< N) ;
M[31 := --m[21, (1 < 2 -< N);

f o r z : = 1 s t e p z u n t i l N/2 d o

begin
Y[J] := Y[J] + Yb--~] × M[3], (/+1 < j < N);
M[~] .= Mb] × M[j-~], (i+1 _< j < N);
e n d ;

Journal of tho .Association for Computing Machinery, Vol 20, No. 1, January 1973

An E~cient Parallel Algorithm for a Tridiagonal Linear System 33

At the completion of each iteration, the array Y contains Y, (j) and M contains
M,(j) , 1 _< j < N. Thus the vectors computed are Y2(j), Y4(j), Ys(j) , etc. From
Theorem 1, YN (j) = y~ for 1 <_ j < N, so that Y~ is the solution to (3). The algo-
ri thm exhibits the central property of recursive doubling because the computation
of Y2, depends only on Y, and the complexity of Y2, is approximately double tha t of
Y,. Since i doubles during each iteration, log2 N iterations are required for the com-
putation.

The vector operations indicated in the program are easily carried out in an
ILLIAC IV type of computer since masking operations can be used to establish the
interval for the index j and cyclic shifting of components of a vector can be used to
align Y[j] with Y[j - i]. The parallel algorithm is also suitable for efficient operation
in vector processors of the pipeline class such as the CDC STAR computer.

For the solution of the backward sweep, eq. (4), the body of the iteration should
be modified as indicated below:

begin
Y[3] := Y[Jl+ Y[J+*] X M[31, (1 < 2 _ < N - 2);
M[j] := M[j]X M[3+i], (1<3_< N - ~);
end;

4. Calculation of the L U Decomposition by Recursive Doubling

We now focus attention on the efficient calculation of (1) and (2). Again we use
recursive doubling to compute the coefficients u = (ul ,u2, .-- ,uN) and m =
(m2 ,m3, . . . , raN). The approach we use is to solve (1) by recursive doubling,
then compute m, = e,/u,_l simultaneously for 2 < i g N to solve (2).

Since (1) is a continued fraction expansion, it is convenient to cast it into a linear
form which is suitable for a recursive doubling algorithm. I t is well known (cf.
Wall, [10]) that every continued fraction expansion is associated with a linear second-
order recurrence relation. In particular, if we define the quantities q~, 0 < i <_ N,
by the recurrence relation

q~ = d,q~-i -- e~f~lq,-2 ,

with the boundary conditions

q0 = 1, ql = dl

then it is easily shown tha t

i > 2 (15)

u, = q,/q,-1 for i >_ 1 (16)

or equivalently,

q, = ~ I u j .
3=1

To solve (1) efficiently, we have only to solve (15) efficiently, because after cal-
culating q,, 0 ~ ~ < N, we can evaluate (16) in a single operation carried out
simultaneously on N processors. Equation (15) is somewhat more difficult to solve
than (3) because it is of second order, whereas (3) is of first order. However, we
can make use of an artifice to reformulate (15) as a matrix recurrence relation of
first order. In particular, it follows from (15) that

q,-1 q,-2.J qi-2..l

Journal of the Assocxation for Computing Machinery, Vol. 20, No. 1, January 1973

34 HAROLD S. STONE

Note that we can substitute A,-1 (q , ~ q , - ~) ~" for (q,-Jq~-2)T above and can continue
this substitution repeatedly until we obtain

q~-i q~ I =A'A~-I"''A2 qoq~]" (17)
This formulation of the problem is ideal for recursive doubling. Since matrix multi-
plication is associative, we can evaluate the product A,A~_i . . . A2 in exactly the
same way tha t we evaluate a product of scalars. In fact, we have encountered this
problem before in (12), and the recursive doubling solution is the schema of (14).
Then to solve (15) for all q~ simultaneously requires log2 N iterations, in which the
i th iteration involves the 2 N-~ simultaneous calculations of the product of two
2 X 2 matrices.

I t is rather interesting to investigate the properties of the functions q, because it
is possible to exploit their characteristics and obtain a parallel algorithm slightly
more efficient than the solution to (17) described above. Fortunately, a great deal
is known about these functions. One important property is well illustrated by the
first few q~ :

q o = l
q~ = dt
qz = d2d~ - - e 2 f l

q3 = d a d 2 d t - dae2fl - - eaf2dl

q4 = d4d3d~4 - da&e2fl - d4e3f2dl - eJ3d24 + e4fae2fl.

Knuth [7] attributes to Euler [3] the observation that q, contains the term
d , d , _ t . . , d l , together with every term that can be constructed by replacing
d~d~_l by --e~f~_l for all possible combinations of such pairs. This property follows
directly from the recurrence relation (15). The first product in (15), d ,q~- l ,

creates terms in q~ for which adjacent d-pairs are deleted from among only the
coefficients d~, ~ , - . . , d~-i in all possible ways, and thus produces every possible
way there can be terms containing d, . The second product in (15) replaces
d,d~_l by - - e ~ f ~ - i , and combines this with every possible way d-pairs can be elimi-
nated among the coefficients dl , ~ , " . . , d,-2. This produces every possible term
without d~.

We can obtain factorizations of the q~ functions that correspond to the interme-
diate results in the evaluation of (17). To arrive at these factorizations, let us define
Q, (j) for j >_ i to be the function q, with the subscripts of its arguments increased
systematically so that the leading subscript isj . For j < i, we define Q, (3) = Q~ (J).
Some examples of Q, (3) should clarify ambiguities in the definition:

Q~(1) = 41
Q1(2) = dz
Q3 (3) = dad2dl - dae2f~ - ear24

Q3 (4) = d4d3d2 - d4e3f2 - e4f~d~

Q3 (2) = Q2 (2) = d2dt - e2 f l .

From this definition it now follows directly that the Q, functions satisfy the re-
currence

Q,+~(j) = Q , (j) Q , (j - s) - e j_~+Jj_~Q~- i (j) Q ~ - i (j - s - 1)
for j>_ s, i > 1 (18)

Journal of the Association for Computing Machinery, Vol 20, No. i, January 1973

A n Ei~£cient Parallel Algor i thm for a Tridiagonal L inear S y s t e m 35

with the boundary conditions

Q~(j) = de
Q , (j) = 1
Q , (j) = 1
ei+g~ = 0

for j > 1,
for j > 0, i_< 0,
f o r j _ < 0 , i > 0 ,
for j < 0.

This recurrence formulation is also well known, with citations in the literature at
least as early as 1853 [8, 9].

The validity of (18) can be verified by an intuitive argument. To find all possible
ways of eliminating adjacent d-pairs in a sequence of i -t- s coefficients, combine
every possible way of eliminating pairs in the first s coefficients with every possible
way of eliminating pairs in the last i coefficients. This accounts for the first term of
(18). However, one d pair contains the last coefficient from the set of s coefficients
and the first coefficient from the set of i coefficients. The first term in (18) does not
account for any of the ways this pair can be eliminated. We see that the second
term in (18) accounts for all such ways, because e~_~+~f~_, replaces the pair and this
replacement is combined with every possible way of eliminating pairs in the first
s - 1 coefficients and in the last i - 1 coefficients. From (18) we obtain the re-
cursive doubling formulae.

THEOREM 2. Q, (3) satisfies the recurrence relations

Q2,(j) = Q , (3) Q , (J - i) + (-ej-~+~fj-~)Q,-1 (j) Q , - i (j - i - 1),
Q2~-1(3) = Q , (j) Q , - I (j - i) + (- e ~ - , + J f ~ - ,) Q , - l (3) Q , - 2 (j - i - 1), (19)
Q2,-2(j) = Q~-l(3)Q,-l(3 - i + 1) -t- (-e j - ,+2f~- ,÷~)Q, -~(j)Q~-2(2 - i) .

PROOF. These formulas follow directly from (18).
The first of the equations in Theorem 2 is a recursive doubling formula which

shows tha t Q2, depends on both Q~ and Q,_ ~. Hence, to compute Q4, we need to com-
pute both Q~, and Q2,-1 • To compute Q4,-~ we have to compute Q2~-2 • Since Q2~-2 de-
pends on the same quantities as Q2, and Q2,-1, we need only the three equations (19)
in a recursive doubling algorithm. Sinse we have to compute Q2,-~ and Q2,-2 anyway,
it is slightly more efficient to compute Q2, by the formula

Q2,(j) = d~Q~,-~(3 - 1) "t- (- e ~ f ~ - l) Q ~ , - 2 (j - 2).

The complete algorithm to compute q,, 1 < i < N is given below in an A.LGOL-
like language. The initial conditions establish the values of Q0, Q~, and Q2 • The
first iteration computes Q:, Q3, and Q4, the second iteration computes Q~, Q7, and
Qs, and the last iteration computes QN-:, Q~-l, and QN •

b e g i n
r e a l a r r a y El2 :N], F[1 : N - 1], D[1 :N], EF[1 :N],

TEMPI1 N], QI[1 :N], QIM1 [0 :N], QIM2[- 1 :N];
c o m m e n t the arrays hold the quantit ies indicated below

E
F
D
EF
TEMP
QI
QIM1
QIM2

the lower diagonal of the tridiagonal matrix A.
the upper diagonal of A.
the major diagonal of A.
this holds products of the form -e,f,_l.
a temporary array.
holds Q, (j).
holds Q,-1 (2).
holds Qi-~ (2').

Journal of the Association for Computing Machinery, VoL 20, No. 1, January 1973

36 HAROLD S. STONE

The computation begins by initializing EF, QI, QIM1, and QIM2;
initialize:

EF[1] := 0;
EF[i] := -E[i] × F[i-1], (2 < i < N);
QIM2[i] := 1, (-1 < i < N);
QIMI[O] := 1;
QIMI[i] := D[i], (1 < z _< N);
QI[i] .= D[i] X D[i-1]+EF[i], (2 < i_< N);
QI[I] .= D[1];

c o m m e n t the last three lines initialize the arrays to Q0, Qi, and Q~, respectively;
for z := 2 s t e p z u n t i l N / 2 do

b e g i n
TEMP[j] -= QIMI[j] X QIMI[3-~+I] + EF[j-i+2] X QIM213] × QIM2[j-~],

(~-1 < ~ _< N);
c o m m e n t T E M P c o n t a i n s Q2,-2 • I t c a n n o t be w r i t t e n ove r Q,-2 y e t s ince Q~_~ is needed

in t h e n e x t l ine;
QIMI[3] := QI[j] × QIMI[j-,] + EF[j- i+I] × QIMI[j] × QIM2[j-i-1],

(,< j_< N);
QIM2[j] := TEMP[j], (/-1 _< j _< N);
Qlb] := Db] X QIMI[j-1] + EF[j] X QIM2[j-2], (3+1 < j < N);

e n d ;

At the termination of the algorithm, QI[i] contains q, for 1 _< i _< N. We use (16)
to compute the diagonal of U from the q,'s. This clearly can be done in parallel by
dividing the vector QI by a shift of itself. Finally, to compute the subdiagonal of
L, we note that (2) indicates that this computation can be done by one parallel di-
vision.

In executing the algorithm on an ILLIAC IV class of computer, the vector align-
ment requiled for the calculation is done by cyclically shifting vectors among the
processors. Since the algorithm requires that QI[j] = QIMI[j] = QIM2[j] = 1 for
j _< 0, we can avoid storing these quantities by changing the cyclic shift of these
vectors to an end-off shift in which the integer 1 is shifted into element 1 of each of
these vectors. Similarly, EF[j] = 0 for 3 -< 1, so that O's are always shifted into
EF[2] when the E F vector is aligned.

The ranges indicated for each statement in the basic iteration show the positions
of the vectors which change when that statement is executed. The algorithm will
work correctly when all ranges are replaced by the full range i _< i < N since values
that do not change are recomputed at each step. I t is somewhat more efficient to use
the full range for a calculation than the ranges given, although redundant recompu-
ration of values may be accompanied by greater round-off error.

The serial solution of a tridiagonal system of equations, when done as outlined in
Section 2, requires 3 (N - 1) of each of the operators division, multiplication, and
subtraction. That schema requires the same number (~f operations on both parallel
and serial computers. The parallel computation has three loops, each executed log2
N times. The loop that computes the L U decomposition requires eight parallel
multiplications and three parallel additions per iteration, whereas the forward and
back substitutions each require two parallel multiplications and one parallel addi-
tion per iteration. Apart from the computations within loops, there are at least four
parallel divisions, two parallel multiplications, and one parallel addition applied to
N elements simultaneously.

Hence the operation count for the parallel algorithm (exclusive of overhead com-

Journal of the Association for Computing Machinery, Voi 20, No. 1, January 1973

An E~cient Parallel Algorithm for a Tridiagonal Linear System 37

putations) is

12 logs N "4- 2 parallel multiplications,
5 log2 N -t- 1 parallel additions,
4 parallel divisions.

The reduction in the number of divisions is particularly important for computers
which take much longer to divide than to multiply. (On the ILLIAC IV computer di-
vision is approximately five times longer than multiplication.)

At this writing the stability of the algorithm has not been thoroughly investigated.
Clearly, the algorithm is unstable if any q~ vanishes. Since q, = II~-1 u j , q, van-
ishes if and only if one of the u, coefficients vanishes. However, if the A matrix is
diagonally dominant and nonsingular, every u, is bounded away from zero [6].

5. Summary and Conclusions

The parallel algorithm for the solution of tridiagonal systems of linear equations
consists of two different algorithms. One algorithm is the parallel evaluation of first-
order difference equations of the form

xi = b,x,_l ~ c,

where the b, and c, are constants.
The second algorithm solves second-order equations of the form

Since continued fraction expansions are associated with second-order difference
equations, the second algorithm may also be used to compute continued fraction ex-
pansions. The form of the solution obviously generalizes to linear recurrence rela-
tions of arbitrary ruth order, still requiring log2 N iterations, where each iteration in-
volves simultaneous multiplications of m X m matrices.

ACKNOWLEDGMENT. The author expresses his appreciation to William Jones and
David Galant of NASA Ames Research Center for their many conversations,
comments, and criticisms which materially aided the research. He is also grateful to
Donald Knuth of Stanford University for pointing out the early contributions to the
factorization of second-order recurrence relations. The recursive doubling algo-
rithm for solving first-order recurrence relations was discovered independently by
Harvard Lomax of NASA Ames Research Center and by Robert Downs of Systems
Control, Inc. Gene Golub of Stanford University pointed out Buneman's algorithm
as an alternative method for solving tridiagonal systems in a time proportional to
log2 N.

REFERENCES

1. BUNEMAN, OSCAR A compact non-iterat~ve Poisson solver. Rep. 294, Inst. for Plasma
Res., Stanford U., Stanford, Calif., 1969.

2. BUZBEE, B. L , GOLUB, G. H , AND NIELSON, C.W. On direct methods for solving Pois-
son's equations. SIAM J. Numer. Anal 7, 4 (Dec. 1970), 627-656.

3. EULER, LEONHARD. Introductw ~n Analys~n Infin~torum, Lausanne, 1748, Sec. 359.
4. FORSYTHE, G. E., AND MOLER, C. B. Computer Solutwn of Linear Algebraic Systems. Pren-

tice-Hall, Englewood Cliffs, N. J., 1967.

Journal of the Association for Computing Machinery, Vol. 20, No. 1, January 1973

38 HAROLD S. STONE

5. GAUTSCHI, WALTER. Computational aspects of three-term recurrence relations, S I A M
Rev. 9, 1, (Jan. 1967), 24-82.

6. ISAACSON, E., AND KELLER, H.B. Analysis of Numerwal Methods. Wiley, New York, 1966.
7. KNUTH, D. E. Mathematical analysm of algorithms. Rep. Stan-CS-71-206, Computer

Sci. Dep., Stanford U., Stanford, Calif., Mar. 1971.
8. PERRON, O. Dee Lehre yon den Kettenbruchen. Leipzig, 1913.
9. SYLVESTER, J . J . Philosophical Magazine 6, (1853), 297-299.

10. WALL, H.S . Analytic Theory of Continued Fractions. Van Nostrand, New York, 1948.

RECEIVED DECEMBER 1971; REVJSBD MARCH 1972

Journal of the Assocmtlon for Computing Machinery, VoL 20, No. 1, January 1973

