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ABSTRACT. Tridiagonal linear systems of equations can be solved on conventional serial 
machines in a time proportional to N, where N is the number of equations. The conventional 
algorithms do not lend themselves directly to parallel computation on computers of the ILLIAC 
IV class, in the sense that they appear to be inherently serial. An efficient parallel algorithm is 
presented in which computation time grows as log2 N. The algorithm is based on recursive 
doubling solutions of linear recurrence relations, and can be used to solve recurrence relations 
of all orders. 

KEY WORDS AND PHRASES: parallel computation, ILLIAC IV, linear equations, computer archi- 
tecture, numerical analysis, LU decomposition, tridiagonal equations 

CR CATEGORIES; 5.14, 6.22 

1. Introduction 

The trend in large scale high speed computers today clearly points to the use of 
internal parallelism to obtain significant increases in speed. For example, the 
ILLIAC IV computer can perform N simultaneous computations where N = 64, 128, 
256, or 512. We expect tha t  highly efficient computations performed on a computer 
of the ILLIAC IV class will be executed N times faster than on a serial computer of 
the same inherent speed. Actually, inefficiencies due to overhead and constraints on 
data communication among processors will reduce the speed increase to kN where 
k lies in the interval 0 _~ k _< 1. Efficient algorithms have k near unity. 

Unfortunately, many parallel algorithms do not lend themselves to efficient 
parallel computation. We can exhibit examples of algorithms for which computa- 
tion time decreases rather slowly as we increase the number of processors, and for 
some pathological examples the computation time is independent of the number of 
processors. An efficient parallel algorithm has the property that  computation speed 
on a processor with N-fold parallelism is N times faster than computation on a 
serial processor. 

In this paper we examine the solution of tridiagonal systems of linear equations. 
I t  is well known that  such systems can be solved using a conventional serial corn- 
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28 HAROLD S. STONE 

puter in a time proportional to N where N is the number of equations. We present 
an algorithm for solving the equations in a time proportional to log2 N by using a 
computer with N-fold parallelism. Hence, for this problem the ratio of the computa- 
tion speed of a parallel processor to that of a serial processor is proportional to 
N/log2 N, since this is the inverse ratio of the computation times. As N grows 
large, N/log2 N grows as N 1-~ for any e > 0, and therefore this algorithm asymptoti- 
cally attains the N-fold speed increase that we require of efficient parallel algorithms. 
A different parallel algorithm for this problem that exhibits a similar time behavior 
has been developed by Buneman [1] and Buzbee et al. [2]. 

In Section 2, we state the problem and indicate conventional serial methods for 
solution. These methods are inherently serial in that each computation depends on 
the result of the immediately preceding computation. In Section 3 we show how to 
perform a forward and backward sweep in log2 N steps when given the L U decompo- 
sition of the original matrix. In Section IV we show how to obtain the L U decompo- 
sition in logs N steps. This particular computation is of general interest because it is 
an efficient method for evaluating partial fraction expansions and linear difference 
equations in parallel. 

2. Statement of the Problem 

We wish to solve the tridiagonal system of equations 

A x  = b 

where 

di fl ] 
e~ d~ /2 

A = e3 d3 f~ . ,oo 
eN-~ dN-i 1~-1 

e~ dN .J 

In the remainder of this paper we assume that N is a power of 2, but this is not an 
essential assumption. 

There are a number of related methods for solving this system serially in a time 
proportional to N. The parallel algorithm presented here is based upon one such 
algorithm, the L U  decomposition (cf. Forsythe and Moler, [4] ). In this algorithm 
we find two matrices, L and U, such that (i) LU = A; (li) L is a lower bidiagonal 
matrix with l 's on its principal diagonal; (iii) U is an upper bidiagonal matrix. 

When A is nonsingular, its L U decomposition is unique provided that L and U 
satisfy the conditions given. In fact, it is easily shown that 

l 
ul fl ] 

U2 f2 
U= u8 ff3 

.o. 

UAr-I fN-l 

U~ .J 
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A n  E~cieent Parallel  A lgor i thm for  a Tridiagonal  L inear  Sys t em 29 

where f~, 1 < i < N - 1, is the upper diagonal of A, and 

Ul = d l ,  us = d s -  (eJ~-l/U~-l)  

The lower bidlagonal matrix, L, is then given by 

L =  m3 1 

raN-1 1 

mN 1 

where 

for i >  1. (1) 

m2 = e2/dl , 
ms = e J  (d~_l -- f i -2m~-l)  for i > 2, (2) 

= eJu,_~ for i > 2. 

After computing L and U, it is relatively straightforward to solve the system of 
equations. The solution is a two-step process. 

Letting y = Ux, we have 

A x  = L U x  = L y - -  b .  

The equation Ly  = b is easily solved for y since 

Yl = h i ,  Ys = b~ - m~y,_l f o r 2  ~ i~_ N. (3) 

Then we solve Ux = y for x. This equation is solved by a backward sweep since 

x~ = y~r/uN, x ,  = (y, - x i + ~ , ) / u ~ .  (4) 

Note that  the recurrence formulas (1), (2), (3), and (4) constitute a complete 
algorithm for the solution of Ax = b. Since each computation in this algorithm 
depends on the results of the previous computation, the algorithm is satisfactory 
for serial computation but  quite unsatisfactory for parallel computation. In the 
following sections we derive equivalent formulas that  are well-suited for parallel 
computation. 

3. Parallel  Evaluat ion  of the Forward and Backward  Sweeps  

The model of a parallel processor tha t  lies behind the development of these parallel 
algorithms is based upon the IL~i~c IV computer.  In this computer there are N 
processors with independent memories, but  only one instruction stream. All of the 
processors operate synchronously, executing the same instruction on N different 
operand pairs, where N can be 64, 128, 256, or 512. For added flexibility, there is a 
mask associated with each processor tha t  enables or disables the processor. Hence 
if a processor's mask is on, the processor executes the current instruction; otherwise 
the processor remains idle. 

Data  can be communicated among the processors in one of two ways. One datum 
can be broadcast to all processors simultaneously, or a vector of N items can be 
shifted cyclically among the processors. As an example of the latter case, suppose 
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30 H A R O L D  S. S T O N E  

tha t  the vector b = (b~ ,b~ ,b3, • . .  ,b~) is stored with b, in the i th processor. Then 
the vector can be shifted j places cyclically so tha t  b, is routed to processor (i + j )  
mod N for all i. 

In this section we shall show how to solve (3) by a technique called recursive 
doubling. The idea is to rewrite (3) so that  y2, is a function of y~. Thus in successive 
iterations we can compute y l ,  y2, y4, ys,  etc., and y~ can be computed in log2 N 
iterations. Since (4) is of the same form as (3), the backward sweep can be done 
using the same algorithm, and it also requires log2 N iterations. 

To begin the derivation, we rewrite (3) in the form 

y~ = b~, y~ = b~ + ( -m , )y ,_~ .  (3') 

This change is necessary because we shall make use of the associativity of addition. 
Substituting for Y,-1 in (3') we find 

y2 = b2 + ( - m 2 ) . b l  , 
y3 ffi b3 ++ ( -ms ) ' b~  -t- ( - m 3 ) .  ( - m 2 ) . b l ,  

y,  = bj 
(5)  

j ~ l  k~3+l 

where a vacuous product  of ink's is interpreted as the constant 1. 
The last formula in (5) shows the explicit dependence of y, on each of the coeffi- 

cients of m and b. Our goal is to derive a recurrence in which y:, is a function of y , .  
To  anticipate the answer, momentarily consider what happens when all of the com- 
ponents of m are equal to - 1. In this case y, is the sum of the first i components of 
b. Then if y,(b¢ ,bj-1, • • • ,bj-,+l) is defined to be the sum of b~ through b~-,+l, 
we have 

y2,(b2~,b2~-l, "'" ,bl)  -- y,(b2,,b2~-I , " "  ,be+l) + y i (b , ,b~- l ,  "'" ,bl) .  (6) 

Equation (6) holds for all i > 1. This recurrence has the recursive doubling form 
that  we seek, because it expresses Y2, in terms of two functions that  are each half as 
complex as y2, • Moreover, we can evaluate the terms in (6) in parallel because they 
are computationally identical and differ only in the values of the arguments. For our 
general solution we compute Y1, Y2, " '"  , YN where each Y, is a function of i 
components of b and m.  We use Y, ( j)  as an abbreviation of the more cumbersome 
notation Y~(b~, b~-l, . . .  , b3- ,+l  ,m~ ,m~-i, . . .  ,m~_,+l). Tha t  is, Y , ( j )  is a func- 
tion of i consecutive components of b a n d m ,  with the j th  component being the 
highest component. 

The  following theorem establishes the relation we desire. 
THEOREM 1. Let Y, (j)  satisfy the recurrence relation 

Y,+i(j) = Y i ( j )  + Y , ( j - - 1 ) . ( - - m 3 )  for i ,  j >_ 1 (7) 

with the boundary conditions 

Y , ( j )  = b, f o r j  > 1, 
Y,(j)  -- 0 f o r j  < O, 
Y , ( j )  = 0 for i < O. 
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An Efficient Parallel Algorithm for a Tridiagonal Linear System 31 

Then 
(a) for s > 1, Y, (j) satisfies the recurrence relation 

Y,+~(J) = Y,(3) + Y,(J - s) h ( -mk)  for i  _> 1, j > s; (8) 
k=3--s-+-I 

3 3 

(b) Y,(j)  = ~ Y~(k) I I  (-m~) for i  > j ~ 1; (9) 
kffil n=k+l 

(c) for i > j > 1, Y,( j)  = y , ,  where y~ is thejth component of the unique solu- 
tion of (3). 

PROOF. To prove part  (a), we use induction on s. 
Basis step. By hypothesis, (8) holds for s = 1. 
Induction step. We assume that  (8) holds for all s in the interval 1 < s _< n -- 1, 

and we show it holds for s = n. 
From the induction hypothesis we have 

Yi+, (j) = Y,-1 (j)  + Y,+i (3 - n .-t- 1). 

= Y . - ,  ( j )  "t- Y1 ( j  - n -+ 1 ) .  

3 

II (--m,) 
k~ l - -n+2  

J 

II (--m,) 
k--3--n+2 

3 

+ Y, ( j  -- n).  I I  ( -mk) .  
k = j - - n + l  

But from the induction hypothesis it follows that  
$ 

Yn(j) -- Yn-l(3) + Yi( j  - n "-t- 1).  I I  
k~3--n+2 

H e n c e  

( - - m k ) ,  

Y,+,(J) = Y,(J)  + Y,(3 - n).  
J 

II 
k ~ 3 - - n + l  

which is the same recurrence as (8) with s replaced by n. This proves par t  (a). 
To prove part  (b), we use induction on i. 
Basis step. By hypothesis, (9) holds for i = 1. 
Induction step. We assume tha t  (9) holds for all i in the interval 1 < i _< n - 1, 

and we prove that  it holds for i = n. Using (8) we have 

Y, ( j )  = Yi(j)  + Y , ~ - i ( j -  1).  ( - -mj) .  

Using the induction hypothesis to substitute for Y~_~ (j - 1) yields 

'-' ] 
Yl(k) I I  ( - -ms)  "(--me) for 2 < j < n, Y"(J) = Y~(J) + L,~-i ~=k+l 

3 3 

= ~ Y l ( k )  IX ( - m , )  for 2 < j  < n. (10) 
k u l  s ~ k + l  

The interval 2 _< j < n for which the equations above are valid arises from the appli- 
cation of the induction hypothesis to Y~-i ( j  -- 1) for 1 < j -- 1 < n -- 1. Since 
(10) has the same form as (9), it is only necessary to show the validity of (10) for 
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32 HAROLD S. STONE 

j = 1 to complete the proof. From the theorem hypothesis, 

Y,(1) -- Yi(1) + Y,_,(0) -- Y~(1). 

Since the same result is obtained by setting j = i in (10), the interval in (10) may 
be changed to i _< j < n. This proves part (b) of the theorem. 

Part (c) is a direct consequence of the fact that with the boundary condition 
Yi (j) -- be, (10) is identical to the solution to (3). This completes the proof of the 
theorem. 

COROLLARY. 
3 

Y2~(j) = Y~(3) + Y~(J -- i ) .  IX ( - m k )  for i ,  j > 1. (I1) 
k=j--z+l 

PROOF. The proof follows directly from part (a) of Theorem 1 by replacing s 
by ~. 

The corollary of Theorem 1 provides the recursive doubling algorithm for the 
solution of (3). The product term in (11) appears to be difficult to evaluate because 
the number of factors in the product doubles with each iteration. Fortunately, we 
can also use recursive doubling to compute the product term. 

Let M , ( j )  be defined to be 
$ 

Me(j)  = I I  ( -mk) for j  _> i, 
k~j--*+l 
3 

~= IX (--mk) for j < i. (12) 
k=l 

Then (11) can be rewritten as 

Y~,(J) = Y,(3) + Y,(3 -- i ) 'M~(3)  for i ,  j > 1. (13) 

The recursive doubling computation of M~ (j) is provided by the formula 

M2,(3) = M , ( j ) . M , ( 3  - i) for i , j  > 1 (14) 

with the boundary conditions 

Mi(j) = -me  fo r j  > 1, 
Me(j)  = 1 fo r j  _< 0, 
M , ( j )  = 1 for i < 0. 

The parallel algorithm for the solution of (3) is simply the iterative application 
of (13) and (14). It is given below in an ALGoLdike language. In the program, 
when an interval of the form (1 _< j _< N) appears after a statement, that state- 
ment is assumed to be executed simultaneously for all indices in the interval. 

b e g i n  
real  array Y[I:N],  M[2:N];  
real  array b[l :N] ,  m[2:N];  
c o m m e n t  Y and  M are t he  a r rays  in which  equa t ions  (13) and  (14) are e v a l u a t e d  A r r a y s  

b and  m are the  a r rays  t h a t  g ive  the  coefficients of (3) These  a r rays  m a y  ut i l ize  t h e  s a m e  
s to rage  space  as t he  a r rays  Y and  M, respec t ive ly ,  

imt ia l ize :  
Y[j] :-= b[3], (1 < 3 --< N ) ;  
M[31 := --m[21, (1 < 2 -< N); 

f o r  z : =  1 s t e p  z u n t i l  N/2 d o  

begin 
Y[J] := Y[J] + Yb--~] × M[3], (/+1 < j < N); 
M[~] .= Mb] × M[j-~], (i+1 _< j < N); 
e n d ;  
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An E~cient Parallel Algorithm for a Tridiagonal Linear System 33 

At the completion of each iteration, the array Y contains Y, (j) and M contains 
M,( j ) ,  1 _< j < N.  Thus the vectors computed are Y2(j), Y4(j), Ys( j ) ,  etc. From 
Theorem 1, YN (j) = y~ for 1 <_ j < N, so that  Y~ is the solution to (3). The algo- 
ri thm exhibits the central property of recursive doubling because the computation 
of Y2, depends only on Y, and the complexity of Y2, is approximately double tha t  of 
Y,.  Since i doubles during each iteration, log2 N iterations are required for the com- 
putation. 

The vector operations indicated in the program are easily carried out in an 
ILLIAC IV type of computer since masking operations can be used to establish the 
interval for the index j and cyclic shifting of components of a vector can be used to 
align Y[j] with Y[j - i]. The parallel algorithm is also suitable for efficient operation 
in vector processors of the pipeline class such as the CDC STAR computer. 

For the solution of the backward sweep, eq. (4), the body of the iteration should 
be modified as indicated below: 

begin 
Y[3] :=  Y[Jl+ Y[J+*] X M[31, ( 1 < 2 _ <  N -  2); 
M[j] := M[j]X M[3+i], (1<3_< N -  ~); 
end; 

4. Calculation of the L U Decomposition by Recursive Doubling 

We now focus attention on the efficient calculation of (1) and (2). Again we use 
recursive doubling to compute the coefficients u = (ul ,u2, .--  ,uN) and m = 
(m2 ,m3, . . .  , raN). The approach we use is to solve (1) by recursive doubling, 
then compute m, = e,/u,_l simultaneously for 2 < i g N to solve (2). 

Since (1) is a continued fraction expansion, it is convenient to cast it into a linear 
form which is suitable for a recursive doubling algorithm. I t  is well known (cf. 
Wall, [10]) that  every continued fraction expansion is associated with a linear second- 
order recurrence relation. In particular, if we define the quantities q~, 0 < i <_ N, 
by the recurrence relation 

q~ = d,q~-i -- e~f~lq,-2 , 

with the boundary conditions 

q0 = 1, ql = dl 

then it is easily shown tha t  

i > 2 (15) 

u, = q,/q,-1 for i >_ 1 (16) 

or equivalently, 

q, = ~ I  u j .  
3=1 

To solve (1) efficiently, we have only to solve (15) efficiently, because after cal- 
culating q,, 0 ~ ~ < N, we can evaluate (16) in a single operation carried out 
simultaneously on N processors. Equation (15) is somewhat more difficult to solve 
than (3) because it is of second order, whereas (3) is of first order. However, we 
can make use of an artifice to reformulate (15) as a matrix recurrence relation of 
first order. In particular, it follows from (15) that  

q,-1 q,-2.J qi-2..l 
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34 HAROLD S. STONE 

Note that  we can substitute A,-1 ( q , ~ q , - ~ )  ~" for (q,-Jq~-2)T above and can continue 
this substitution repeatedly until we obtain 

q~-i q~ I =A'A~-I"''A2 qoq~]" (17) 
This formulation of the problem is ideal for recursive doubling. Since matrix multi- 
plication is associative, we can evaluate the product A,A~_i . . .  A2 in exactly the 
same way tha t  we evaluate a product of scalars. In fact, we have encountered this 
problem before in (12), and the recursive doubling solution is the schema of (14). 
Then to solve (15) for all q~ simultaneously requires log2 N iterations, in which the 
i th iteration involves the 2 N-~ simultaneous calculations of the product of two 
2 X 2 matrices. 

I t  is rather interesting to investigate the properties of the functions q, because it 
is possible to exploit their characteristics and obtain a parallel algorithm slightly 
more efficient than the solution to (17) described above. Fortunately, a great deal 
is known about these functions. One important property is well illustrated by the 
first few q~ : 

q o = l  
q~ = dt 
qz = d2d~ - - e 2 f l  

q3 = d a d 2 d t  - dae2fl - -  eaf2dl 

q4 = d4d3d~4 - da&e2fl - d4e3f2dl - eJ3d24  + e4fae2fl. 

Knuth  [7] attributes to Euler [3] the observation that  q, contains the term 
d , d , _ t . . ,  d l ,  together with every term that  can be constructed by replacing 
d~d~_l by --e~f~_l for all possible combinations of such pairs. This property follows 
directly from the recurrence relation (15). The first product in (15), d ,q~- l ,  

creates terms in q~ for which adjacent d-pairs are deleted from among only the 
coefficients d~, ~ ,  - . .  , d~-i in all possible ways, and thus produces every possible 
way there can be terms containing d, .  The second product in (15) replaces 
d,d~_l by - - e ~ f ~ - i  , and combines this with every possible way d-pairs can be elimi- 
nated among the coefficients dl ,  ~ ,  " . .  , d,-2. This produces every possible term 
without d~. 

We can obtain factorizations of the q~ functions that  correspond to the interme- 
diate results in the evaluation of (17). To arrive at these factorizations, let us define 
Q, (j) for j >_ i to be the function q, with the subscripts of its arguments increased 
systematically so that  the leading subscript isj .  For j < i, we define Q, (3) = Q~ (J).  
Some examples of Q, (3) should clarify ambiguities in the definition: 

Q~(1) = 41 
Q1(2) = dz 
Q3 (3) = dad2dl - dae2f~ - ear24 

Q3 (4) = d4d3d2 - d4e3f2 - e4f~d~ 

Q3 (2) = Q2 (2) = d2dt - e2 f l .  

From this definition it now follows directly that  the Q, functions satisfy the re- 
currence 

Q,+~(j) = Q , ( j ) Q , ( j -  s)  - e j_~+Jj_~Q~- i  ( j ) Q ~ - i ( j  - s -  1) 
for j>_ s, i >  1 (18) 
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with the boundary conditions 

Q~(j)  = de 
Q , ( j )  = 1 
Q , ( j )  = 1 
ei+g~ = 0 

for j > 1, 
for j >  0, i_< 0, 
f o r j _ < 0 ,  i > 0 ,  
for j < 0. 

This recurrence formulation is also well known, with citations in the literature at  
least as early as 1853 [8, 9]. 

The validity of (18) can be verified by an intuitive argument. To find all possible 
ways of eliminating adjacent d-pairs in a sequence of i -t- s coefficients, combine 
every possible way of eliminating pairs in the first s coefficients with every possible 
way of eliminating pairs in the last i coefficients. This accounts for the first term of 
(18). However, one d pair contains the last coefficient from the set of s coefficients 
and the first coefficient from the set of i coefficients. The first term in (18) does not 
account for any of the ways this pair can be eliminated. We see that  the second 
term in (18) accounts for all such ways, because e~_~+~f~_, replaces the pair and this 
replacement is combined with every possible way of eliminating pairs in the first 
s - 1 coefficients and in the last i - 1 coefficients. From (18) we obtain the re- 
cursive doubling formulae. 

THEOREM 2. Q, (3) satisfies the recurrence relations 

Q2,(j) = Q , ( 3 ) Q , ( J -  i )  + (-ej-~+~fj-~)Q,-1 ( j )  Q , - i ( j  - i - 1), 
Q2~-1(3) = Q , ( j ) Q , - I ( j -  i )  + ( - e ~ - , + J f ~ - , ) Q , - l ( 3 ) Q , - 2 ( j  - i - 1), (19) 
Q2,-2(j) = Q~-l(3)Q,-l(3 - i + 1) -t- ( -e j - ,+2f~- ,÷~)Q, -~( j )Q~-2(2  - i ) .  

PROOF. These formulas follow directly from (18). 
The first of the equations in Theorem 2 is a recursive doubling formula which 

shows tha t  Q2, depends on both Q~ and Q,_ ~. Hence, to compute Q4, we need to com- 
pute both Q~, and Q2,-1 • To compute Q4,-~ we have to compute Q2~-2 • Since Q2~-2 de- 
pends on the same quantities as Q2, and Q2,-1, we need only the three equations (19) 
in a recursive doubling algorithm. Sinse we have to compute Q2,-~ and Q2,-2 anyway, 
it is slightly more efficient to compute Q2, by the formula 

Q2,(j) = d~Q~,-~(3 - 1) "t- ( - e ~ f ~ - l ) Q ~ , - 2 ( j -  2). 

The complete algorithm to compute q,, 1 < i < N is given below in an A.LGOL- 
like language. The initial conditions establish the values of Q0, Q~, and Q2 • The 
first iteration computes Q:, Q3, and Q4, the second iteration computes Q~, Q7, and 
Qs, and the last iteration computes QN-:, Q~-l,  and QN • 

b e g i n  
r e a l  a r r a y  El2 :N], F[1 : N -  1], D[1 :N], EF[1 :N], 

TEMPI1 N], QI[1 :N], QIM1 [0 :N], QIM2[- 1 :N]; 
c o m m e n t  the arrays hold the quantit ies indicated below 

E 
F 
D 
EF 
TEMP 
QI 
QIM1 
QIM2 

the lower diagonal of the tridiagonal matrix A. 
the upper diagonal of A. 
the major diagonal of A. 
this holds products of the form -e,f,_l. 
a temporary array. 
holds Q, (j). 
holds Q,-1 (2). 
holds Qi-~ (2'). 
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The computation begins by initializing EF, QI, QIM1, and QIM2; 
initialize: 

EF[1] := 0; 
EF[i] := -E[i] × F[i-1], (2 < i < N); 
QIM2[i] := 1, ( -1  < i <  N);  
QIMI[O] := 1; 
QIMI[i] := D[i], (1 < z _< N); 
QI[i] .= D[i] X D[i-1]+EF[i], (2 < i_< N); 
QI[I] .= D[1]; 

c o m m e n t  the last three lines initialize the arrays to Q0, Qi, and Q~, respectively; 
for z := 2 s t e p  z u n t i l  N / 2  do  

b e g i n  
TEMP[j] -= QIMI[j] X QIMI[3-~+I] + EF[j-i+2] X QIM213] × QIM2[j-~], 

(~-1 < ~ _< N); 
c o m m e n t  T E M P  c o n t a i n s  Q2,-2 • I t  c a n n o t  be  w r i t t e n  ove r  Q,-2 y e t  s ince  Q~_~ is needed  

in  t h e  n e x t  l ine;  
QIMI[3] := QI[j] × QIMI[j-,] + EF[j- i+I]  × QIMI[j] × QIM2[j-i-1], 

( ,< j_<  N); 
QIM2[j] := TEMP[j], (/-1 _< j _< N); 
Qlb] := Db] X QIMI[j-1] + EF[j] X QIM2[j-2], (3+1 < j < N); 

e n d ;  

At the termination of the algorithm, QI[i] contains q, for 1 _< i _< N. We use (16) 
to compute the diagonal of U from the q,'s. This clearly can be done in parallel by 
dividing the vector QI by a shift of itself. Finally, to compute the subdiagonal of 
L, we note that (2) indicates that this computation can be done by one parallel di- 
vision. 

In executing the algorithm on an ILLIAC IV class of computer, the vector align- 
ment requiled for the calculation is done by cyclically shifting vectors among the 
processors. Since the algorithm requires that QI[j] = QIMI[j]  = QIM2[j] = 1 for 
j _< 0, we can avoid storing these quantities by changing the cyclic shift of these 
vectors to an end-off shift in which the integer 1 is shifted into element 1 of each of 
these vectors. Similarly, EF[j] = 0 for 3 -< 1, so that O's are always shifted into 
EF[2] when the E F  vector is aligned. 

The ranges indicated for each statement in the basic iteration show the positions 
of the vectors which change when that statement is executed. The algorithm will 
work correctly when all ranges are replaced by the full range i _< i < N since values 
that do not change are recomputed at each step. I t  is somewhat more efficient to use 
the full range for a calculation than the ranges given, although redundant recompu- 
ration of values may be accompanied by greater round-off error. 

The serial solution of a tridiagonal system of equations, when done as outlined in 
Section 2, requires 3 (N - 1) of each of the operators division, multiplication, and 
subtraction. That schema requires the same number (~f operations on both parallel 
and serial computers. The parallel computation has three loops, each executed log2 
N times. The loop that computes the L U  decomposition requires eight parallel 
multiplications and three parallel additions per iteration, whereas the forward and 
back substitutions each require two parallel multiplications and one parallel addi- 
tion per iteration. Apart from the computations within loops, there are at least four 
parallel divisions, two parallel multiplications, and one parallel addition applied to 
N elements simultaneously. 

Hence the operation count for the parallel algorithm (exclusive of overhead com- 
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putations) is 

12 logs N "4- 2 parallel multiplications, 
5 log2 N -t- 1 parallel additions, 
4 parallel divisions. 

The reduction in the number of divisions is particularly important for computers 
which take much longer to divide than to multiply. (On the ILLIAC IV computer di- 
vision is approximately five times longer than multiplication.) 

At this writing the stability of the algorithm has not been thoroughly investigated. 
Clearly, the algorithm is unstable if any q~ vanishes. Since q, = II~-1 u j ,  q, van- 
ishes if and only if one of the u, coefficients vanishes. However, if the A matrix is 
diagonally dominant and nonsingular, every u, is bounded away from zero [6]. 

5. Summary and Conclusions 

The parallel algorithm for the solution of tridiagonal systems of linear equations 
consists of two different algorithms. One algorithm is the parallel evaluation of first- 
order difference equations of the form 

xi = b,x,_l ~ c, 

where the b, and c, are constants. 
The second algorithm solves second-order equations of the form 

Since continued fraction expansions are associated with second-order difference 
equations, the second algorithm may also be used to compute continued fraction ex- 
pansions. The form of the solution obviously generalizes to linear recurrence rela- 
tions of arbitrary ruth order, still requiring log2 N iterations, where each iteration in- 
volves simultaneous multiplications of m X m matrices. 
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