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Write your feedback for the course at https://sixweb.mit.edu/student/evaluate/6.841-s2009. It will help
future students decide whether they should take the class.

Motivation

A few examples of where randomization (and derandomization) results are used:

• Algorithmic, for instance RP. This might be less exciting than we think though if BPP = P.

• Distributed Computing. A classic problem is: given n computers that are pairwise connected, each
with a single bit. If all the bits are 0 they should agree that they all have 0, if they all have 1 they should
agree they all have 1, otherwise they can do whatever. The communication links are arbitrarily speeds;
some computers might even be asleep for an hour. We can’t solve this problem deterministically.

• Cryptography. Given that the inputs, outputs, and algorithm aren’t secret, randomness is essential to
have any secrets at all.

• Game Theory. Equilibrium exists if and only if randomness exists. For instance, optimal rock-paper-
scissors playing is dependent on access to random bits.

Extracting Randomness

Nature provides unpredictability. Physics at a small enough level is assumed to be random. However, as a
practical matter, it’s hard to use this randomness to come up with unbiased, independent coins. Electrons
are expensive to deal with; they don’t do things with exactly 50-50 probability, and it’s hard to do multiple
independent trials on the same chip. Though intel does sell a costly randomness generating chip.

So maybe we can start with a large number (say n2) weakly random (biased, dependent) bits, and use
those to generate n truly random bits.
Von Neumann: If we start with a stream of random, independent bits, all biased with the same unknown
probability p (they are 0 with probability p, 1 with probability 1− p), we can convert them into a stream of
truly random bits by looking at pairs of bits, discarding 00 and 11, and turning 01 into 0 and 10 into 1.

This idea of purifying random bits out of a source of randomness is called extraction.
Blum: Gave an extractor for Markovian sources, where the state jumps around, and each state is biased
differently.
Vazzirani (’83): Ph.d thesis on extracting randomness.
Nissan-Zuckermann (’93): Defined randomness and randomness extraction as given below:

We say a distribution has entropy k if no sequence is produced with probability more than 1/2k. Goal:
take sequence of n bits with entropy k, and extract some m ≤ k truly random bits from it.

Turns out to be impossible deterministically. BUT, you can do it if you start with a small random seed.
Lots of work is done, and then Trevisan (’99) comes up with an efficient extractor, where the seed is of length
log n, and m is maybe k/10.

Pseudorandom Generators

It’s not hard to imagine that BPP = P. How would one prove such a thing? If we could generate random-
looking distributions over n bits using a small number of random bits l(n) (called a seed), we could determin-
istically use the BPP algorithm over every string in the distribution, and explicitly calculate a probability.
In particular,
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A pseudorandom generator G : {0, 1}l → {0, 1}n looks random to algorithm A if Prx←Un(A(x) = 1) ≈ε
Prs←Ul

(A(G(s)) = 1), where U is the uniform distribution and ε > 0.
What we’re most interested in are PRGs (pseudorandom generators) G that fool all polysize circuits A.

We’re interested in polysize instead of polytime for technical reasons.
Yao: If there exists a PRG G that runs in polytime, stretches l(n) bits to n bits, and fools all polysize

algorithms A, then BPP ∈ DTIME(2l(n
k)). In particular, if l is O(log n), then BPP = P. The proof is

straightforward; you just loop over all the possible seeds.

Blum and Micali’s PRG

We use RSA : {0, 1}l → {0, 1}l to construct a PRG. RSA is a one-way function, meaning that RSA(x) is
easy to compute but RSA−1(y) is hard.

Define G1 : {0, 1}l → {0, 1}l+1 as follows: G1(x) prepends the most significant bit of x to RSA(x). Blum
and Micali proved that this is in fact a pseudorandom generator, but it’s a very hard and fragile proof. For
instance, prepending the least significant bit doesn’t work. We then define Gk : {0, 1}l+k by simply iterating
the procedure.

Claim: For every k ∈ poly(l) and polynomial q, Gk(x) looks random with ε = 1/q to all poly sized
circuits.

Proof: We reduce from G1, using general techniques called reconstruction and hybridization.
Define Di for 0 ≤ i ≤ l+k to be the distribution over strings of length l+k where the first i bits are from

Ui and the last l + k − i bits are the last l + k − i bits of Gl+k. Say for contradiction we could distinguish
Ul+k = D0 and Gl+k = Dl+k in polysize with probability ε. Then for any i we can distinguish Di and Di+1

in polysize with expected probability ε/k.
Di looks like i random bits + Gk−i(Ul). Di+1 looks like i random bits + 1 random bit + Gk−i−1(Ul). We

can generate Di (resp Di+1) by applying Gk−i−1 to the last l bits of G1(x) (resp a random bit + RSA(x)),
and then prepending the first bit of G1(x) (resp the random bit) and Ul. Since we can’t distinguish G1(x)
from a random bit + RSA(x), we have a contradiction. C

This work has gone in several directions since then.

• H̊astad, Impagliazzo, Levin, Luby: One way functions are necessary and sufficient for the existence of
PRGs. By one-way function we mean something that is computable in a fixed polynomial time, but
fools all polytime algorithms.

• Since the RSA stuff is so touchy — it depends on the specifics of RSA, and the fact that we took the
most significant bit — there was hope for a more general method of gaining an extra bit.

Goldreich-Levin: If f is a general one-way permutation, there is no way to come up with a generic bit
b such that (b(x), f(x)) looks random.

But we can come up with such a bit for a slight variant. Given f̂(x, r) = (f(x), r), b(x, r) = 〈x, r〉 =
⊗xiri is such a desired bit. Note that f̂ is quite similar to f .

• If we could find a G that runs in some big poly time, but fools all small poly time algorithms, it would
still show BPP = P.

Say f : {0, 1}m → {0, 1} is hard for circuits of size 2εm. We set the ith bit of our output string to f(si),
where {si} is a set of not-necessarily disjoint subsets of size m in a seed s.

Nisan-Wigderson: One way to make this idea work (to still have each si contain enough independent
randomness) is to insist |si ∩ sj | < 10m2/l. (Note m2/l is the expected intersection between any si
and sj .)

Using hybridization as above, we reduce to the case when the seed is fixed except over sn. All the
other seeds intersect this in at most 10m2/l bits, and so f(si), i < n can be computed in a circuit of
size 210m2/l, which is tiny if you choose m and l right [look at the notes for more details].
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Essentially, the problem reduces to finding a function f computable in DTIME(210000n) but that isn’t
in SIZE(2.0001n), in other words, a function for which non-uniformity doesn’t help much. Though
everything can be computed in SIZE(2n), there are lots of functions in SIZE(2.0001n); it’s mainly a
matter of finding one in the intersection of the two sets.
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