6.841 Advanced Complexity Theory May 11, 2009

Lecture 25
Lecturer: Madhu Sudan Scribe: Rishi Gupta

Write your feedback for the course at https://sixweb.mit.edu/student /evaluate/6.841-s2009. It will help
future students decide whether they should take the class.

Motivation
A few examples of where randomization (and derandomization) results are used:
e Algorithmic, for instance RP. This might be less exciting than we think though if BPP = P.

e Distributed Computing. A classic problem is: given n computers that are pairwise connected, each
with a single bit. If all the bits are 0 they should agree that they all have 0, if they all have 1 they should
agree they all have 1, otherwise they can do whatever. The communication links are arbitrarily speeds;
some computers might even be asleep for an hour. We can’t solve this problem deterministically.

e Cryptography. Given that the inputs, outputs, and algorithm aren’t secret, randomness is essential to
have any secrets at all.

e Game Theory. Equilibrium exists if and only if randomness exists. For instance, optimal rock-paper-
scissors playing is dependent on access to random bits.

Extracting Randomness

Nature provides unpredictability. Physics at a small enough level is assumed to be random. However, as a
practical matter, it’s hard to use this randomness to come up with unbiased, independent coins. Electrons
are expensive to deal with; they don’t do things with exactly 50-50 probability, and it’s hard to do multiple
independent trials on the same chip. Though intel does sell a costly randomness generating chip.

So maybe we can start with a large number (say n?) weakly random (biased, dependent) bits, and use
those to generate n truly random bits.
Von Neumann: If we start with a stream of random, independent bits, all biased with the same unknown
probability p (they are 0 with probability p, 1 with probability 1 — p), we can convert them into a stream of
truly random bits by looking at pairs of bits, discarding 00 and 11, and turning 01 into 0 and 10 into 1.

This idea of purifying random bits out of a source of randomness is called eztraction.
Blum: Gave an extractor for Markovian sources, where the state jumps around, and each state is biased
differently.
Vazzirani (’83): Ph.d thesis on extracting randomness.
Nissan-Zuckermann (’93): Defined randomness and randomness extraction as given below:

We say a distribution has entropy k if no sequence is produced with probability more than 1/2%. Goal:
take sequence of n bits with entropy k, and extract some m < k truly random bits from it.

Turns out to be impossible deterministically. BUT, you can do it if you start with a small random seed.
Lots of work is done, and then Trevisan (’99) comes up with an efficient extractor, where the seed is of length
logn, and m is maybe k/10.

Pseudorandom Generators

It’s not hard to imagine that BPP = P. How would one prove such a thing? If we could generate random-
looking distributions over n bits using a small number of random bits I(n) (called a seed), we could determin-
istically use the BPP algorithm over every string in the distribution, and explicitly calculate a probability.
In particular,

25-1

A pseudorandom generator G : {0,1}! — {0,1}" looks random to algorithm A if Pr,_y (A(z) = 1) =,
Pry_y,(A(G(s)) = 1), where U is the uniform distribution and € > 0.

What we're most interested in are PRGs (pseudorandom generators) G that fool all polysize circuits A.
We're interested in polysize instead of polytime for technical reasons.

Yao: If there exists a PRG G that runs in polytime, stretches {(n) bits to n bits, and fools all polysize
algorithms A, then BPP € DTIME(QI(”)C)). In particular, if [is O(logn), then BPP = P. The proof is
straightforward; you just loop over all the possible seeds.

Blum and Micali’s PRG

We use RSA : {0,1} — {0,1}! to construct a PRG. RSA is a one-way function, meaning that RSA(x) is
easy to compute but RSA™!(y) is hard.

Define Gy : {0,1}' — {0,1}*! as follows: G'1(z) prepends the most significant bit of z to RSA(x). Blum
and Micali proved that this is in fact a pseudorandom generator, but it’s a very hard and fragile proof. For
instance, prepending the least significant bit doesn’t work. We then define Gy, : {0, 1}'** by simply iterating
the procedure.

Claim: For every k € poly(l) and polynomial ¢, G(z) looks random with e = 1/q to all poly sized
circuits.

Proof: We reduce from G, using general techniques called reconstruction and hybridization.

Define D; for 0 < i <[4k to be the distribution over strings of length [+ k where the first ¢ bits are from
U; and the last [+ k — i bits are the last | + k — ¢ bits of G4 ,. Say for contradiction we could distinguish
U1 = Dy and G4, = Dyt in polysize with probability e. Then for any i we can distinguish D; and D; 1
in polysize with expected probability e/k.

D; looks like ¢ random bits + Gg—;(U;). D;11 looks like ¢ random bits 4+ 1 random bit + G_;—1(U;). We
can generate D; (resp D;11) by applying Gi_;—1 to the last [bits of G1(z) (resp a random bit + RSA(x)),
and then prepending the first bit of G;(z) (resp the random bit) and U;. Since we can’t distinguish G1(x)
from a random bit + RSA(z), we have a contradiction. <

This work has gone in several directions since then.

e Hastad, Impagliazzo, Levin, Luby: One way functions are necessary and sufficient for the existence of
PRGs. By one-way function we mean something that is computable in a fixed polynomial time, but
fools all polytime algorithms.

e Since the RSA stuff is so touchy — it depends on the specifics of RSA, and the fact that we took the
most significant bit — there was hope for a more general method of gaining an extra bit.

Goldreich-Levin: If f is a general one-way permutation, there is no way to come up with a generic bit
b such that (b(x), f(x)) looks random.

But we can come up with such a bit for a slight variant. Given f(z,7) = (f(z),r), b(z,r) = (z,7) =
®uz;r; is such a desired bit. Note that f is quite similar to f.

e If we could find a G that runs in some big poly time, but fools all small poly time algorithms, it would
still show BPP = P.

Say f:{0,1}™ — {0, 1} is hard for circuits of size 2€™. We set the i*" bit of our output string to f(s;),
where {s;} is a set of not-necessarily disjoint subsets of size m in a seed s.

Nisan-Wigderson: One way to make this idea work (to still have each s; contain enough independent
randomness) is to insist |s; N s;| < 10m?/l. (Note m?/l is the expected intersection between any s;
and s;.)

Using hybridization as above, we reduce to the case when the seed is fixed except over s,. All the
other seeds intersect this in at most 10m? /I bits, and so f(s;),i < n can be computed in a circuit of
size 219m%/1 which is tiny if you choose m and I right [look at the notes for more details].

25-2

Essentially, the problem reduces to finding a function f computable in DTIME(219900%) bhut that isn’t
in SIZE(2:9°917) " in other words, a function for which non-uniformity doesn’t help much. Though
everything can be computed in SIZE(2"), there are lots of functions in SIZE(2:°°°1%); it’s mainly a
matter of finding one in the intersection of the two sets.

25-3

