
6.841 Advanced Complexity Theory Apr 13, 2009

Lecture 18

Lecturer: Madhu Sudan Scribe: Jinwoo Shin

In this lecture, we will discuss about PCP (probabilistically checkable proof). We first overview the history
followed by the formal definition of PCP and then study its connection to inapproximability results.

1 History of PCP

Interactive proofs were first independently investigated by Goldwasser-Micali-Rackoff and Babai. Goldwasser-
Micali-Wigderson were focused on the cryptographic implications of this technique; they are interested in
zero-knowledge proofs, which prove that one has a solution of a hard problem without revealing the solution
itself. Their approach is based on the existence of one-way functions.

Another development on this line was made by BenOr-Goldwasser-Kilian-Wigderson who introduced
several provers. 2IP has two provers who may have agreed on their strategies before the interactive proof
starts. However, during the interactive proof, no information-exchange is allowed between two provers. The
verifier can them questions in any order. The authors showed that with 2 provers, zero-knowledge proofs
are possible without assuming the existence of one-way functions.

Clearly, 2IP is at least as powerful as IP since the verifier could just ignore the second prover. Further-
more, one can define 3IP , 4IP , . . . , MIP and naturally ask whether those classes get progressively more
powerful. It turns out that the answer is no by Fortnow-Rompel-Sipser. They proved that 2IP = 3IP =
. . . = MIP = OIP , where OIP is called oracle interactive proof. OIP is an interactive proof system with a
memoryless oracle; all answers are committed to the oracle before the interactive proof starts and the oracle
just answer them (without considering the previous query-history) when the verifier query them.

Now we consider the difference between OIP and NEXPTIME. They both have an input x of n bits
and a proof(certificate) π of length 2nc

for some constant c. The difference relies on the verifier V . If
L ∈ NEXPTIME, there exists a deterministic-exptime V such that

• If x ∈ L, then there exists a π such that V (x, π) accepts,

• If x /∈ L, then ∀π, V (x, π) rejects.

Similarly, if L ∈ OIP , there exists a randomized-polytime V such that

• If x ∈ L, then there exists a π such that V (x, π) accepts with high probability,

• If x /∈ L, then ∀π, V (x, π) accepts with low probability.

Hence the relation OIP ⊆ NEXPTIME is obvious since one can build the verifier for NEXPTIME
by simulating all random coins of V in OIP . More interestingly, Babai-Fortnow-Lund showed the other
direction OIP ⊇ NEXPTIME. Using this relation MIP = OIP = NEXPTIME, Feige-Goldwasser-
Lovasz-Safra-Szegedy proved that the maximum clique-size of a graph is hard to approximate and later
Arora-Lund-Motwani-Sudan-Szegedy found the more general class of optimization problems, called MAX-

SNP problems, which are hard to approximate.
Note that in the description of OIP , V checks only poly-many places of exponentially large-sized proof

π. One can generalized this concept, and consider an oracle interactive proof system with γ(n) random bits
used by the verifier V and q(n) bits queried from the oracle by V . Here n is the number of bits in the input
x. Arora-Safra first introduce this notation as the probabilistically checkable proof class PCP [γ(n), q(n)],
which can be defined formally as follows.

Definition 1 The language L is in PCPc,s[γ(n), q(n)] if there exists a PCP -verifier V , which uses γ(n)
random bits and queries q(n) bits from the oracle, such that

• If x ∈ L, then there exists a π such that V (x, π) accepts with probability ≥ c,

18-1

• If x /∈ L, then ∀π, V (x, π) accepts with probability ≤ s.

Otherwise we mention c and s in the above definition, we implicitly assume c = 1 and s < 1 − ε for
ε > 0. Hence, in this notation, NEXPTIME = OIP = PCP [poly(n), poly(n)]. Now, it is natural to ask
what other complexity classes we can get by varying γ and q. On the line of this question, Babai-Fortnow-
Levin-Szegedy proves that NP ⊆ PCP [poly(log n), poly(logn)]. Arora-Safra improved this by showing that
NP ⊆ PCP [O(log n), O(

√
log n)], and finally Arora-Lund-Motwani-Sudan-Szegedy (and later Dinur) proved

that
NP ⊆ PCP [O(log n), O(1)],

which is called PCP -Theorem. This was improved even further by Hastad and Moshkovitz-Raz who gave
proofs of NP ⊆ PCPc,s[O(log n), 3] and NP ⊆ PCPc,s [(1 + o(1)) log n, 3] respectively, where c = 1 and
s = 1/2 + o(1). In this lecture, we will study the proof of PCP -Theorem presented by Dinur.

2 Inapproximability of MAX-3SAT

Before we look at the proof of PCP-Theorem, we present its connection to the inapproximability of MAX-
3SAT problem. First we define MAX-3SAT problem. For given m clauses on n Boolean variables with each
clause of length at most 3, the goal of this problem can be stated as follows depending on which types of
problems we consider.

◦ (Search) Find an assignment which satisfies the maximum number of clauses.

◦ (Optimization) Find the maximum number OPT in above Search problem.

◦ (Decision) Decide whether OPT ≥ t for a given t.

Similarly, the approximation versions of these goals can be stated for a given approximation-ratio α ≥ 1.

◦ (Search) Find an assignment which satisfies more than OPT
α

clauses.

◦ (Optimization) Find a number x such that OPT
α
≤ x ≤ OPT .

◦ (Decision) Decide whether OPT ≥ t or OPT ≤ t
α

for a given t.

We note that the search problem is the hardest and the decision problem is the easiest. In 1976, Johnson
gave an algorithm with α = 2 for this problem. (His algorithm is somewhat trivial by choosing a random
assignment and its complement, but he settles the concept of the approximation ratio.) Later in 1992,
Yannakakis developed a highly nontrivial algorithm with α = 4

3 . The current best algorithm which was
given by Zwick in 1998 has α = 8

7 . Using PCP -Theorem, Hastad in 1998 showed that this 8
7 is best one can

achieve under assuming P 6= NP . Today, we will prove a weaker version that α < 16
15 cannot be achievable

if P 6= NP .
To prove this, for any NP -complete language L, it is sufficient to construct a poly-time reduction f such

that f(x) = (φ, t) and it satisfies the following:

• If x ∈ L, then OPT (φ) ≥ t,

• If x /∈ L, then OPT (φ) < 15
16 t.

Here, φ is a 3SAT formula and t is a positive integer.
From PCP -Theorem, we have a verifier V which uses O(log n) random bits and query 3 bits from the

oracle (or the proof π). For a fixed random bits R, let i1 be the index of the bit of π where V queries at
the first time. Depending on the value of πi1 , V may query the different index of π at the second time; i2 if
πi1 = 0 and i3 if πi1 = 1. Similarly, when V query at the third time, its query-index is one of i4, i5, i6 and
i7. Now, there is no more query and it is decided whether V accepts or not based on these three queries. If
we consider each bit of the proof π as a boolean variables πi, the decision of V can be expressed as a 3SAT

18-2

πi1

πi2
πi3

πi4 πi5 πi6 πi7

ReReRe AcAcAcAcAc

000

0

0

0

0 1 1
1

11

1

1

Figure 1: This figure illustrates an example of the decision-tree of V for a fixed random bits R. ‘Re’ and
‘Ac’ stand for ’Reject’ and ’Accept’ respectively.

formula φR. For example, if V rejects when (πi1 , πi2 , πi5) = (0, 1, 1), πi1 ∨ π̄i2 ∨ π̄i5 should be one of clauses
in φR. Figure 1 illustrates this example. In this case,

φR = (πi1 ∨ πi2 ∨ πi4) ∧ (πi1 ∨ π̄i2 ∨ π̄i5) ∧ (π̄i1 ∨ π̄i3 ∨ πi7).

Hence, φR consists of at most 8 clauses. The reduction f chooses φ = ∧RφR and t as the total number of
clauses in φ. From the definition of PCP , if x ∈ L, then there exists a π such that V accepts. In other
words, if x ∈ L, φ is satisfiable. On the other hand, if x /∈ L, then ∀π, V accepts π with probability ≈ 1

2 .
Thus, if x /∈ L, the number of unsatisfying φR is at least ≈ m/2 for all π, where m is the total number of R.
Since t ≤ 8m, the desired inequality follows: OPT (φ) . t−m/2 ≤ 15

16 t.

3 Dinur’s Proof of PCP -Theorem

Before stating the Dinur’s main theorem, we first define the Generalized Graph k-coloring problem, say
GGC(k). For a given graph G = (V, E) and a function π : E × {1, . . . , k} × {1, . . . , k} → {0, 1}, the
Generalized Graph k-coloring problem is finding a coloring χ : V → {1, . . . , k} such that π(e, χ(u), χ(v)) = 1
for all e = (u, v) ∈ E. Also, define

UNSAT (G, χ) =
of edges e = (u, v) s.t. π(e, χ(u), χ(v)) = 0

|E| ,

UNSAT (G) = min
χ

UNSAT (G, χ).

Now we state the Dinur’s main theorem.

Theorem 2 For any NP -complete language L, there exist k, ε > 0 and a poly-time reduction f to the

instance of GGC(k) such that f(x) = (G, π) and it satisfies the following:

• If x ∈ L, then UNSAT (G) = 0.

• If x ∈ L, then UNSAT (G) ≥ ε.

It is not hard to see that Theorem 2 is equivalent to PCP -Theorem. The key lemma behind Theorem 2
is following.

Lemma 3 ∃k1, ε > 0, f such that

1In fact, Lemma 3 is true for all k ≥ 3. However, to show Theorem 2, it is enough to consider a specific k.

18-3

• f is a linear-time reduction with GGC(k)
f−→ GGC(k) and G

f−→ Ĝ

• UNSAT (G) = 0 ⇒ UNSAT (Ĝ) = 0

• UNSAT (Ĝ) ≥ min{ε, 2 · UNSAT (G)}.

We call Lemma 3 as Amplifying Lemma since the reduction f amplifies UNSAT while preserving the order

of the graph i.e. |Ĝ| = O(|G|). Initially, G may have UNSAT (G) ∈
{
0, 1

|E|

}
in the worst case. Apply f to

G to get a new graph G← Ĝ such that UNSAT (G) ∈
{
0, 2

|E|

}
. Similarly, we iteratively apply f to G until

we obtain UNSAT (G) ∈ {0} ∪ [ε, 1]. This procedure needs at most O(log |E|ε) = O(log |G|ε) iterations.
Since the size of G blows up by a constant factor at each iteration, the size of G which we finally obtained
is O(1)O(log |G|ε) = poly(|G|). Therefore, using the fact that GGC(k) is NP -complete, we can completes the
proof of Theorem 2.

Now we sketch the proof of Lemma 3. Its proof needs the following two lemmas.

Lemma 4 ∀k, C ∃K, ε0 > 0, f such that

• f is a linear-time reduction with GGC(k)
f−→ GGC(K) and G

f−→ Ĝ

• UNSAT (G) = 0 ⇒ UNSAT (Ĝ) = 0

• UNSAT (Ĝ) ≥ min{ε0, C · UNSAT (G)}.

Lemma 5 ∃k, δ > 0 ∀K ∃f such that

• f is a linear-time reduction with GGC(K)
f−→ GGC(k) and G

f−→ Ĝ

• UNSAT (G) = 0 ⇒ UNSAT (Ĝ) = 0

• UNSAT (Ĝ) ≥ δ · UNSAT (G).

Choose k, δ from Lemma 5 and then let C = 2/δ for Lemma 4. Hence, naturally we choose the reduction f
in Lemma 3 as f = f2 ◦ f1 where f1 and f2 are linear reductions in Lemma 4 and Lemma 5 respectively. If

G
f1−→ Ĝ

f2−→ G̃,

UNSAT (G) = 0 ⇒ UNSAT (Ĝ) = 0 ⇒ UNSAT (G̃) = 0,

UNSAT (G̃) ≥ δ · UNSAT (Ĝ)

≥ δ ·min{ε0,
2

δ
· UNSAT (G)}

≥ min{ε0δ, 2 · UNSAT (G)}.

Hence, we can choose ε = ε0δ for Lemma 3. In the next lecture, we will study the proof of Lemma 5.

18-4

