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In this lecture, we will discuss about PCP (probabilistically checkable proof). We first overview the history
followed by the formal definition of PCP and then study its connection to inapproximability results.

1 History of PCP

Interactive proofs were first independently investigated by Goldwasser-Micali-Rackoff and Babai. Goldwasser-
Micali-Wigderson were focused on the cryptographic implications of this technique; they are interested in
zero-knowledge proofs, which prove that one has a solution of a hard problem without revealing the solution
itself. Their approach is based on the existence of one-way functions.

Another development on this line was made by BenOr-Goldwasser-Kilian-Wigderson who introduced
several provers. 2IP has two provers who may have agreed on their strategies before the interactive proof
starts. However, during the interactive proof, no information-exchange is allowed between two provers. The
verifier can them questions in any order. The authors showed that with 2 provers, zero-knowledge proofs
are possible without assuming the existence of one-way functions.

Clearly, 2IP is at least as powerful as IP since the verifier could just ignore the second prover. Further-
more, one can define 3IP , 4IP , . . . , MIP and naturally ask whether those classes get progressively more
powerful. It turns out that the answer is no by Fortnow-Rompel-Sipser. They proved that 2IP = 3IP =
. . . = MIP = OIP , where OIP is called oracle interactive proof. OIP is an interactive proof system with a
memoryless oracle; all answers are committed to the oracle before the interactive proof starts and the oracle
just answer them (without considering the previous query-history) when the verifier query them.

Now we consider the difference between OIP and NEXPTIME. They both have an input x of n bits
and a proof(certificate) π of length 2nc

for some constant c. The difference relies on the verifier V . If
L ∈ NEXPTIME, there exists a deterministic-exptime V such that

• If x ∈ L, then there exists a π such that V (x, π) accepts,

• If x /∈ L, then ∀π, V (x, π) rejects.

Similarly, if L ∈ OIP , there exists a randomized-polytime V such that

• If x ∈ L, then there exists a π such that V (x, π) accepts with high probability,

• If x /∈ L, then ∀π, V (x, π) accepts with low probability.

Hence the relation OIP ⊆ NEXPTIME is obvious since one can build the verifier for NEXPTIME
by simulating all random coins of V in OIP . More interestingly, Babai-Fortnow-Lund showed the other
direction OIP ⊇ NEXPTIME. Using this relation MIP = OIP = NEXPTIME, Feige-Goldwasser-
Lovasz-Safra-Szegedy proved that the maximum clique-size of a graph is hard to approximate and later
Arora-Lund-Motwani-Sudan-Szegedy found the more general class of optimization problems, called MAX-

SNP problems, which are hard to approximate.
Note that in the description of OIP , V checks only poly-many places of exponentially large-sized proof

π. One can generalized this concept, and consider an oracle interactive proof system with γ(n) random bits
used by the verifier V and q(n) bits queried from the oracle by V . Here n is the number of bits in the input
x. Arora-Safra first introduce this notation as the probabilistically checkable proof class PCP [γ(n), q(n)],
which can be defined formally as follows.

Definition 1 The language L is in PCPc,s[γ(n), q(n)] if there exists a PCP -verifier V , which uses γ(n)
random bits and queries q(n) bits from the oracle, such that

• If x ∈ L, then there exists a π such that V (x, π) accepts with probability ≥ c,
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• If x /∈ L, then ∀π, V (x, π) accepts with probability ≤ s.

Otherwise we mention c and s in the above definition, we implicitly assume c = 1 and s < 1 − ε for
ε > 0. Hence, in this notation, NEXPTIME = OIP = PCP [poly(n), poly(n)]. Now, it is natural to ask
what other complexity classes we can get by varying γ and q. On the line of this question, Babai-Fortnow-
Levin-Szegedy proves that NP ⊆ PCP [poly(log n), poly(logn)]. Arora-Safra improved this by showing that
NP ⊆ PCP [O(log n), O(

√
log n)], and finally Arora-Lund-Motwani-Sudan-Szegedy (and later Dinur) proved

that
NP ⊆ PCP [O(log n), O(1)],

which is called PCP -Theorem. This was improved even further by Hastad and Moshkovitz-Raz who gave
proofs of NP ⊆ PCPc,s[O(log n), 3] and NP ⊆ PCPc,s [(1 + o(1)) log n, 3] respectively, where c = 1 and
s = 1/2 + o(1). In this lecture, we will study the proof of PCP -Theorem presented by Dinur.

2 Inapproximability of MAX-3SAT

Before we look at the proof of PCP-Theorem, we present its connection to the inapproximability of MAX-
3SAT problem. First we define MAX-3SAT problem. For given m clauses on n Boolean variables with each
clause of length at most 3, the goal of this problem can be stated as follows depending on which types of
problems we consider.

◦ (Search) Find an assignment which satisfies the maximum number of clauses.

◦ (Optimization) Find the maximum number OPT in above Search problem.

◦ (Decision) Decide whether OPT ≥ t for a given t.

Similarly, the approximation versions of these goals can be stated for a given approximation-ratio α ≥ 1.

◦ (Search) Find an assignment which satisfies more than OPT
α

clauses.

◦ (Optimization) Find a number x such that OPT
α
≤ x ≤ OPT .

◦ (Decision) Decide whether OPT ≥ t or OPT ≤ t
α

for a given t.

We note that the search problem is the hardest and the decision problem is the easiest. In 1976, Johnson
gave an algorithm with α = 2 for this problem. (His algorithm is somewhat trivial by choosing a random
assignment and its complement, but he settles the concept of the approximation ratio.) Later in 1992,
Yannakakis developed a highly nontrivial algorithm with α = 4

3 . The current best algorithm which was
given by Zwick in 1998 has α = 8

7 . Using PCP -Theorem, Hastad in 1998 showed that this 8
7 is best one can

achieve under assuming P 6= NP . Today, we will prove a weaker version that α < 16
15 cannot be achievable

if P 6= NP .
To prove this, for any NP -complete language L, it is sufficient to construct a poly-time reduction f such

that f(x) = (φ, t) and it satisfies the following:

• If x ∈ L, then OPT (φ) ≥ t,

• If x /∈ L, then OPT (φ) < 15
16 t.

Here, φ is a 3SAT formula and t is a positive integer.
From PCP -Theorem, we have a verifier V which uses O(log n) random bits and query 3 bits from the

oracle (or the proof π). For a fixed random bits R, let i1 be the index of the bit of π where V queries at
the first time. Depending on the value of πi1 , V may query the different index of π at the second time; i2 if
πi1 = 0 and i3 if πi1 = 1. Similarly, when V query at the third time, its query-index is one of i4, i5, i6 and
i7. Now, there is no more query and it is decided whether V accepts or not based on these three queries. If
we consider each bit of the proof π as a boolean variables πi, the decision of V can be expressed as a 3SAT
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Figure 1: This figure illustrates an example of the decision-tree of V for a fixed random bits R. ‘Re’ and
‘Ac’ stand for ’Reject’ and ’Accept’ respectively.

formula φR. For example, if V rejects when (πi1 , πi2 , πi5) = (0, 1, 1), πi1 ∨ π̄i2 ∨ π̄i5 should be one of clauses
in φR. Figure 1 illustrates this example. In this case,

φR = (πi1 ∨ πi2 ∨ πi4 ) ∧ (πi1 ∨ π̄i2 ∨ π̄i5) ∧ (π̄i1 ∨ π̄i3 ∨ πi7).

Hence, φR consists of at most 8 clauses. The reduction f chooses φ = ∧RφR and t as the total number of
clauses in φ. From the definition of PCP , if x ∈ L, then there exists a π such that V accepts. In other
words, if x ∈ L, φ is satisfiable. On the other hand, if x /∈ L, then ∀π, V accepts π with probability ≈ 1

2 .
Thus, if x /∈ L, the number of unsatisfying φR is at least ≈ m/2 for all π, where m is the total number of R.
Since t ≤ 8m, the desired inequality follows: OPT (φ) . t−m/2 ≤ 15

16 t.

3 Dinur’s Proof of PCP -Theorem

Before stating the Dinur’s main theorem, we first define the Generalized Graph k-coloring problem, say
GGC(k). For a given graph G = (V, E) and a function π : E × {1, . . . , k} × {1, . . . , k} → {0, 1}, the
Generalized Graph k-coloring problem is finding a coloring χ : V → {1, . . . , k} such that π(e, χ(u), χ(v)) = 1
for all e = (u, v) ∈ E. Also, define

UNSAT (G, χ) =
# of edges e = (u, v) s.t. π(e, χ(u), χ(v)) = 0

|E| ,

UNSAT (G) = min
χ

UNSAT (G, χ).

Now we state the Dinur’s main theorem.

Theorem 2 For any NP -complete language L, there exist k, ε > 0 and a poly-time reduction f to the

instance of GGC(k) such that f(x) = (G, π) and it satisfies the following:

• If x ∈ L, then UNSAT (G) = 0.

• If x ∈ L, then UNSAT (G) ≥ ε.

It is not hard to see that Theorem 2 is equivalent to PCP -Theorem. The key lemma behind Theorem 2
is following.

Lemma 3 ∃k1, ε > 0, f such that

1In fact, Lemma 3 is true for all k ≥ 3. However, to show Theorem 2, it is enough to consider a specific k.
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• f is a linear-time reduction with GGC(k)
f−→ GGC(k) and G

f−→ Ĝ

• UNSAT (G) = 0 ⇒ UNSAT (Ĝ) = 0

• UNSAT (Ĝ) ≥ min{ε, 2 · UNSAT (G)}.

We call Lemma 3 as Amplifying Lemma since the reduction f amplifies UNSAT while preserving the order

of the graph i.e. |Ĝ| = O(|G|). Initially, G may have UNSAT (G) ∈
{
0, 1

|E|

}
in the worst case. Apply f to

G to get a new graph G← Ĝ such that UNSAT (G) ∈
{
0, 2

|E|

}
. Similarly, we iteratively apply f to G until

we obtain UNSAT (G) ∈ {0} ∪ [ε, 1]. This procedure needs at most O(log |E|ε) = O(log |G|ε) iterations.
Since the size of G blows up by a constant factor at each iteration, the size of G which we finally obtained
is O(1)O(log |G|ε) = poly(|G|). Therefore, using the fact that GGC(k) is NP -complete, we can completes the
proof of Theorem 2.

Now we sketch the proof of Lemma 3. Its proof needs the following two lemmas.

Lemma 4 ∀k, C ∃K, ε0 > 0, f such that

• f is a linear-time reduction with GGC(k)
f−→ GGC(K) and G

f−→ Ĝ

• UNSAT (G) = 0 ⇒ UNSAT (Ĝ) = 0

• UNSAT (Ĝ) ≥ min{ε0, C · UNSAT (G)}.

Lemma 5 ∃k, δ > 0 ∀K ∃f such that

• f is a linear-time reduction with GGC(K)
f−→ GGC(k) and G

f−→ Ĝ

• UNSAT (G) = 0 ⇒ UNSAT (Ĝ) = 0

• UNSAT (Ĝ) ≥ δ · UNSAT (G).

Choose k, δ from Lemma 5 and then let C = 2/δ for Lemma 4. Hence, naturally we choose the reduction f
in Lemma 3 as f = f2 ◦ f1 where f1 and f2 are linear reductions in Lemma 4 and Lemma 5 respectively. If

G
f1−→ Ĝ

f2−→ G̃,

UNSAT (G) = 0 ⇒ UNSAT (Ĝ) = 0 ⇒ UNSAT (G̃) = 0,

UNSAT (G̃) ≥ δ · UNSAT (Ĝ)

≥ δ ·min{ε0,
2

δ
· UNSAT (G)}

≥ min{ε0δ, 2 · UNSAT (G)}.

Hence, we can choose ε = ε0δ for Lemma 3. In the next lecture, we will study the proof of Lemma 5.
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