1 Recap

We defined RP as the class of languages accepted by PPT machine with one-sided error bounded below 1/3, BPP with two-sided error with gap 1/3. RP was shown to be robust in the following sense.

Define RP_e such that $L \in \text{RP}_e$ if for some poly-time TM M and random bits y,

\[
x \in L \Rightarrow \Pr[M(x, y) \text{ rejects}] \leq e(|x|)
\]
\[
x \notin L \Rightarrow \Pr[M(x, y) \text{ accepts}] = 0
\]

Then $\text{RP}_{1/poly(n)} = \text{RP} = \text{RP}_{1/2^{o(poly(n)}}$ (the two poly’s may be different polynomials), yet $\text{RP}_{1/2^n} = \text{NP}$.

We will see that BPP is robust in the similar sense. Define $\text{BPP}_{c,s}$ such that $L \in \text{BPP}_{c,s}$ if for some poly-time TM M and random bits y,

\[
x \in L \Rightarrow \Pr[M(x, y) \text{ accepts}] \geq c(|x|)
\]
\[
x \notin L \Rightarrow \Pr[M(x, y) \text{ accepts}] \leq s(|x|)
\]

Let us assume that, as often necessary, that s is “nice”, ie fully time constructible.

(Quick note: If $c \leq s$ then $\text{BPP}_{c,s}$ would contain every language. While it is not required that $c(n) \geq 0.5$ and $s(n) \leq 0.5$, one can shift the probability by proper amount so that c, s do straddle 0.5.)

2 Amplification for BPP

Using Chernoff bound we will see that $\text{BPP}_{f(n)+1/poly(n), f(n)-1/poly(n)} = \text{BPP} = \text{BPP}_{1-2^{-poly(n)}, 2^{-poly(n)}}$.

Theorem 1 (Chernoff bound) Let $X_1, \ldots, X_n \in [0,1]$ be independent random variables and $X = \sum_i X_i/n$. Then $\Pr[|X - E[X]| \geq \epsilon] \leq e^{-(\epsilon^2 n)/2}$.

Suppose some poly-time TM M places L in $\text{BPP}_{f(n)+1/p(n), f(n)-1/p(n)}$ where p is a polynomial, and f a “nice” function. Intuitively if one runs M for k times (with different random bits) and output according to whether the average of k answers exceeds $f(n)$, the error probability should decrease.

By how much? Let random variable X_i denote the output of ith run. For $x \in L$, error occurs if $\sum_i X_i/k < f(n)$ i.e at least $p(n)$ off expectation, thus with probability $O(e^{-k/2(p(n))^2})$ by Chernoff bound. With k polynomial in n, this can be as small as $2^{-\Theta(n)}$ for any polynomial q. Likewise for $x \notin L$.

Here we have used polynomially many more random bits to reduce error. Can we do with fewer? The state-of-art, using ideas from pseudorandomness (ie expanders), is that $O(k)$ extra random bits can reduce error from 1/3 to 2^{-k}.

3 $\text{BPP} \subseteq \text{P/poly}$

In advice (ie non-uniform) classes, one piece of (short) advice is expected to help all 2^n computations on length n input. This might seem weak at first, but often times randomization is not more powerful than non-uniformity. In particular Adleman showed that $\text{BPP} \subseteq \text{P/poly}$.

Suppose machine M places L in BPP with error probability below $2^{-p(n)}$, $p(n) > n$ (okay due to amplification). Is there a random string y good for all 2^n inputs of length n, ie $M(x, y) = L(x)$ for each $x \in \{0,1\}^n$? Indeed, for each x only a $2^{-p(n)}$ fraction of all random strings are bad; summing over all 2^n possible x this fraction is still below 1! Thus some advice works for all inputs as random tape.
4 \(\text{BPP} \subseteq \Sigma_2^p \cap \Pi_2^p \)

How about some uniform class upper bounding \(\text{BPP} \)? It is clear that \(\text{BPP} \subseteq \text{PSPACE} \); it is unclear how \(\text{BPP} \) is related to \(\text{NP} \). Nevertheless we can show something intermediate: \(\text{BPP} \subseteq \Sigma_2^p \). (Which implies \(\text{BPP} \subseteq \Sigma_2^p \cap \Pi_2^p \) as \(\text{BPP} \) is closed under complementation.)

As before, suppose some machine \(M \) places \(L \) in \(\text{BPP} \) with error probability below \(2^{-n} \). Let \(x \) be a length \(n \) input, and \(M \) uses \(m \) random bits on \(x \).

(Note that letting \(\exists \)-player show a set of polynomially many strings good for \(x \), as evidence, is not enough. To decide \(L \) by a 2-round debate one must ensure some kind of “fairness”, eg say one might let \(\exists \)-player to produce first half bits of \(y \), \(\forall \)-player second half, and see if \(M(x, y) \) accepts. This is still too crude to work, but illustrates the point.)

The idea is we do let \(\exists \)-player show a set of polynomially many strings good for \(x \), and the \(\forall \)-player tries to find some bijection mapping all of them to strings bad for \(x \). The bijections allowed are \(\oplus \) for any \(y' \). Intuitively, for \(x \in L \) it is hard for \(\forall \)-player to come up with such bijection that works on all good strings, and for \(x \notin L \) it is easy (and “easy” in a stronger sense than it is hard in the \(x \in L \) case).

Formally, one claims

\[
L = \{ x : \exists y_1, \ldots, y_m \forall y' \left[\bigvee_{1 \leq i \leq m} M(x, y_i \oplus y') = 1 \right] \}
\]

Proof. Suppose \(x \in L \). Imagine one picks \(y_1, \ldots, y_m \) at random. Probability that \(\bigwedge_i M(x, y_i \oplus y') = 0 \), for each \(y' \), is below \(2^{-mn} \); union bound over all possible \(y' \) the probability is still below 1, ie some \(y_1, \ldots, y_m \) make this false for all \(y' \).

Now suppose \(x \notin L \). Imagine one picks \(y' \) at random. Probability that \(\bigvee_i M(x, y_i \oplus y') = 1 \), for each \(y_1, \ldots, y_m \), is at most \(m2^{-n} < 1 \), ie some \(y' \) makes this false for all \(y_1, \ldots, y_m \).

This very idea can also be used to show \(\text{promiseBPP} \subseteq \text{promiseRP} \) (ie if \(P = \text{promiseRP} \) then \(P = \text{promiseBPP} \)).

5 Next time

We will talk about promise problems, which arise naturally eg when \(\text{BPP} \) has no known complete problem (as we don’t know how to enumerate error-bounded PPTs, ie to verify error-bounded-ness) yet \(\text{promiseBPP} \) has complete problems (eg given input \((M, x)\), promised that \(M \) is indeed error bounded, does \(M(x) = 1 \)?)

We will talk about the complexity of \(\text{UNIQUE} – \text{SAT} \), ie \(\text{SAT} \) with the promise that the satisfying assignment is either unique or non-existing. Is \(\text{UNIQUE} – \text{SAT} \) hard? We shall see that \(\text{NP} \neq \text{RP} \Rightarrow \text{UNIQUE} – \text{SAT} \) hard. (This problem arises in cryptography, where we want a mapping easy to compute one-way, but hard to revert. The mapping certainly should be one-to-one, so \(\text{UNIQUE} – \text{SAT} \) may be a good candidate.)