Meeting to talk about final projects on Wednesday, 11 March 2009, from 5pm to 7pm. Location: TBA. Includes food.

1 Overview of today’s lecture

- Randomized computation.
- Complexity classes: RP, coRP, BPP, ZPP.
- Basic properties of these complexity classes.

So far, we know that P is a computationally feasible class. We could try and expand this notion, and then study where the expanded notions lie in relation with P, NP, etc.

2 Examples of problems which have randomized algorithms

1. **Problem**: Find an n-bit prime.

 Input: $N \in \mathbb{N}, N > 3$ such that $2^{n-1} < N \leq 2^n$.

 Output: A prime p, such that $N \leq p < 2N$.

 A polynomial-time algorithm for this problem is as follows. This algorithm is randomized. No deterministic algorithm is known.

   ```
   1: loop \{n times\}
   2: Pick $k$ randomly and uniformly between $N$ (inclusive) and $2N$ (exclusive).
   3: if $k$ is prime then
   4:     return $k$
   5: else
   6:     continue loop.
   7: return a random value between $N$ (inclusive) and $2N$ (exclusive).
   ```

 A sketch of the proof of correctness of this algorithm is as follows.

 Sketch of Proof First we observe that we can always find such a prime. This is the following lemma, which we state without proof.

 Lemma 2.1 (Bertrand’s Postulate) If n is a natural number greater than 3, then there exists a prime number p such that $n \leq p < 2n$.

 Apart from Lemma 2.1 the algorithm depends on the Prime Number Theorem, which we state without proof.

 Theorem 2.2 (Prime Number Theorem) For any real number x, let $\pi(x)$ be the number of primes less than or equal to x. Then,

 $$\lim_{x \to \infty} \frac{\pi(x)}{x/\ln x} = 1.$$
In this context, the Prime Number Theorem implies that the number of primes between \(N \) and \(2N \) is about \(\frac{2N}{\pi + 1} - \frac{N}{\pi} \), which is approximately \(\frac{N}{\pi} \). So the probability of \(k \) being prime is approximately \(\frac{1}{n} \). Since the algorithm is repeated \(n \) times, the probability of it not returning a prime is approximately

\[
\left(1 - \frac{1}{n} \right)^n \approx \frac{1}{e}.
\]

We will see later that this error probability is small enough for our purposes.

2. **Problem:** Square-root modulo primes.
 Input: An \(n \)-bit long prime \(p \), an integer \(a \) such that \(0 \leq a \leq p \).
 Output: An integer \(\alpha \) such that \(\alpha^2 \equiv a \pmod{p} \).

Berlekamp, and later Adleman, Manders and Miller, gave randomized polynomial-time algorithms to solve this problem. A deterministic polynomial-time algorithm is not known.

A randomized polynomial-time algorithm to solve this problem is as follows. First, \(\beta \) is chosen randomly and uniformly from \([p - 1] \). If we can solve the equation \(\gamma^2 = \beta^2 \alpha \pmod{p} \) for \(\gamma \), then \(\alpha = \beta / \gamma \).

For this, \(\theta \) is picked randomly and uniformly from \([p - 1] \), and the following equation can be solved, \((x - \theta)^2 = \beta^2 \alpha \pmod{p} \). To do this, we use (without proof) the fact that \(\gcd(x^2 - 2x\theta + \theta^2 - \beta^2 \alpha, x^{p-2} - 1) \) is linear in \(x \) with probability \(1/2 \).

If we find this \(\gcd q \) and if it is linear in \(x \), then it will be either \(x - \theta - \beta \alpha \) or \(x - \theta + \beta \alpha \), so we can just return \((x - \theta - q) / \beta \).

3. **Problem:** Given \(kn \times n \) square matrices of integers \(M_1, M_2, \ldots, M_k \), do there exist integers \(r_1, r_2, \ldots, r_k \) such that \(\det(\sum_{i=0}^k r_i M_i) \neq 0 \)?

A randomized algorithm for this problem is as follows. Pick \(r_1, r_2, \ldots, r_k \) randomly and uniformly from \(\{1, 2, \ldots, 3n\} \) and check if \(\det(\sum_{i=0}^k r_i M_i) \neq 0 \). If so, output ‘yes’; otherwise output ‘no’.

The proof of the correctness of this algorithm is discussed in Section 3.

4. **Problem:** Equivalence of circuits.
 Input: Circuits \(C_1, C_2 \) over integer inputs \(x_1, x_2, \ldots, x_n \) with addition and multiplication gates and the constants \(\{-1, 0, 1\} \).
 Output: Is \(C_1 \) equivalent to \(C_2 \)? (Is the function computed by \(C_1 \) the same as the function computed by \(C_2 \)?)

A randomized algorithm for this problem is as follows. (Here, we assume that the size of the circuit is a polynomial in the number of inputs, to make estimations about the input size of our problem simpler.)

1. Pick a prime of size about \(2^{O(n)} \) and call it \(p \).
2. Pick \(x_1, x_2, \ldots, x_n \) randomly and uniformly in \(\mathbb{Z}_p \).
3. {In the following if-statement, the output of each gate is computed in \(\mathbb{Z}_p \).}
4. if \(C_1(x_1, x_2, \ldots, x_n) = C_2(x_1, x_2, \ldots, x_n) \) then
5. return ‘yes’
6. else
7. return ‘no’

Observe that we can have a polynomial-sized circuit that computes \(2^{2^n} \), as follows. (Here, ‘A’ denotes addition and ‘M’ denotes multiplication).
The number 2^n is too big for polynomial-time simulations, and it is clear that we can actually get a number of this size from a circuit of polynomial size. So we reduce modulo p, so as to restrict all the possible numbers in our computations to have at most $O(n)$ bits. This ensures that the algorithm does not exceed polynomial time.

3 Some proofs

To prove the algorithms for finding square-root modulo primes and for checking the equivalence of two circuits, we will use the following lemma. Recall that we have already used once in a previous lecture.

Lemma 3.1 (Schwarz-Zippel Lemma) Let $p(x_1, \ldots, x_n)$ be a not identically zero polynomial of total degree d over any (possibly infinite) field \mathbb{F}. If a_1, \ldots, a_n are chosen uniformly at random from any finite set $S \subset \mathbb{F}$, then

$$\Pr[p(a_1, \ldots, a_n) = 0] \leq \frac{d}{|S|}.$$

To prove Item 2 (Square-root modulo primes), we have to calculate the probability that the algorithm makes an error. Note that $p(x_1, \ldots, x_k) = \det(\sum_{i=0}^k x_i M_i)$ is a polynomial of degree $d = n$ in the variables x_i. Suppose that the polynomial is not identically zero, otherwise the algorithm can never err.

If with the randomly chosen r_i, $\det(\sum_{i=0}^k r_i M_i)$ turns out to be non-zero, then there certainly exists an assignment to the x_is such that $p(x_1, \ldots, x_i)$ is non-zero. On the other hand, if with the randomly chosen r_i the quantity $p(r_1, \ldots, r_i)$ is zero, then there is some probability of error. This can be calculated by using Lemma 3.1. We have chosen the set S to be $\{1, 2, \ldots, 3n\}$, and the r_i have been chosen randomly and uniformly from S. Therefore,

$$\Pr[p(r_1, \ldots, r_k) = 0] \leq \frac{d}{|S|} = n \frac{1}{3n} = \frac{1}{3}.$$

We will only sketch the proof of Item 4 (Circuit equivalence). For this we need to estimate the error probability. If for some choice of x_1, x_2, \ldots, x_n, we get that $C_1(x_1, \ldots, x_n) \neq C_2(x_1, \ldots, x_n)$ modulo p, then the circuits are certainly not equivalent. On the other hand, if $C_1(x_1, \ldots, x_n) = C_2(x_1, \ldots, x_n)$ modulo p, then there is some probability of error. We can also represent $C_1(x_1, \ldots, x_n)$ and $C_2(x_1, \ldots, x_n)$ as polynomials in x_1, \ldots, x_n. The following facts lead to the proof that the probability of error is sufficiently small.

- The degrees of the polynomials corresponding to the circuits may be quite large, but Lemma 3.1 still works because $|S| = |\mathbb{Z}_p| \geq 2^{\Omega(n)}$.
- The numbers appearing during the computation are no more than n bits long after reduction modulo p. If the original probability of error is ϵ, then we can repeat this algorithm poly(n) times to decrease this to $\epsilon^{\text{poly}(n)}$, by using the following well-known result.

Theorem 3.2 (Chinese Remainder Theorem) Let M, N be integers such that for each prime p_i from k distinct primes p_1, p_2, \ldots, p_k, $M \equiv N \pmod{p_i}$. Then $M \equiv N \pmod{p_1 p_2 \cdots p_k}$.

4 Complexity classes

4.1 Types of randomized algorithms

To start off the discussion of complexity classes, we first consider the kinds of errors that may occur in a randomized algorithm. For the purposes of the discussion below, we fix $\epsilon = \frac{1}{3}$. We will see later that this particular choice of ϵ is not special. Let L be a language, and suppose that our algorithm is deciding membership of x in L. Then we can have the following types of errors.
1. Two-sided error:
 \(x \in L \Rightarrow \text{probability of error is at most} \ \epsilon \), and
 \(x \notin L \Rightarrow \text{probability of error is at most} \ \epsilon \).

 The class of polynomial-time algorithms that behave in this manner is called BPP, which stands for Bounded-error Probabilistic Polynomial-time.

2. One-sided error. There are two types of one-sided error:

 (a) \(x \notin L \Rightarrow \text{no errors, and} \)
 \(x \in L \Rightarrow \text{probability of error is at most} \ \epsilon \).

 The class of polynomial-time algorithms that behave in this manner is called RP, which stands for Randomized Polynomial-time.

 (b) \(x \in L \Rightarrow \text{no errors, and} \)
 \(x \notin L \Rightarrow \text{probability of error is at most} \ \epsilon \).

 The class of polynomial-time algorithms that behave in this manner is called coRP, which stands for co-Randomized Polynomial-time.

3. Zero-sided error:
 \(x \in L \Rightarrow \text{no error,} \)
 \(x \notin L \Rightarrow \text{no error, but} \)
 may not halt on some inputs.

 Alternatively, we can say that the running time of the algorithm is a random variable with polynomial expectation. Or, we can say that the algorithm is permitted to return one of three values, 1 if it accepts, 0 if it rejects, and ? if it does not know (within some fixed time).

 The class of polynomial-time algorithms that behave in this manner is called ZPP, which stands for Zero-error Probabilistic Polynomial-time.

4.2 Models of randomized computation

A natural model for randomized computation is a Turing Machine \(M \) which has a special ‘coin-tossing’ state, the ‘\$’ state.

However, the preferred model for randomized computation is that of Two-input Turing Machines. In this case, \(x \) is the real input and \(y \) is an auxiliary input. The input \(x \) represents the actual input data, and the input \(y \) captures the randomness used for a particular instance of a randomized computation. A Two-input Turing Machine \(M \) takes in \((x, y) \) and runs deterministically on \((x, y) \). (For the cases of RP, coRP, ZPP and BPP, \(M \) must run in polynomial-time of the input, and therefore \(y \) must be a polynomial in the size of \(x \)).

4.3 New definitions for complexity classes

Using the language of two-input Turing Machines, we can redefine some of the complexity classes that we already know. Again, \(\epsilon = \frac{1}{3} \). For each of these complexity classes, the language \(L \) is in the class if there is a two-input Turing Machine \(M \) with the second input always a polynomial in the size of the first, such that certain results (defined in the following list) are true. In the following experiments, \(y \) is always chosen uniformly from all the available possibilities.

1. BPP

 (a) If \(x \in L \) then \(\Pr_y [M(x, y) \text{ accepts}] \geq 1 - \epsilon \).

 (b) If \(x \notin L \) then \(\Pr_y [M(x, y) \text{ accepts}] \leq \epsilon \).

2. NP
(a) If \(x \in L \) then \(\Pr_y[M(x, y) \text{ accepts}] > 0 \).
(b) If \(x \notin L \) then \(\Pr_y[M(x, y) \text{ accepts}] = 0 \).

3. \(\text{RP} \)
 (a) If \(x \in L \) then \(\Pr_y[M(x, y) \text{ accepts}] \geq 1 - \epsilon \).
 (b) If \(x \notin L \) then \(\Pr_y[M(x, y) \text{ accepts}] = 0 \).

4. \(\text{coRP} \)
 (a) If \(x \in L \) then \(\Pr_y[M(x, y) \text{ accepts}] = 1 \).
 (b) If \(x \notin L \) then \(\Pr_y[M(x, y) \text{ accepts}] \leq \epsilon \).

5. \(\text{ZPP} \)
 ZPP cannot be naturally defined with this notation, so we can give the following definition.
 \(\text{ZPP} = \text{RP} \cap \text{coRP} \).

5 Choice of error parameter

What is the ideal choice for the maximum permissible error? Is it on the order of \(1/3 \), \(1/n^3 \), \(1/2^n \), or on the order of \(1 - 1/n^5 \), \(1 - 1/2^n \)? Let us only look at the class \(\text{RP} \) for now. This can be formalized by looking at the following result.

Lemma 5.1 (Amplification Lemma) Suppose an algorithm \(M \) errs with probability \(e(n) \), so that if \(x \in L \) then \(\Pr_y[M(x, y) \text{ accepts}] \geq 1 - e(n) \) and if \(x \notin L \) then \(\Pr_y[M(x, y) \text{ accepts}] = 0 \) (when \(y \) is chosen uniformly). Repeat \(M \) \(k(n) \) times, for some polynomial \(k \). The new algorithm makes errors with the following probabilities.

\[
\begin{align*}
 x \in L & \Rightarrow \Pr_y[M(x, y) \text{ accepts}] \geq 1 - (e(n))^{k(n)}, \\
 x \notin L & \Rightarrow \Pr_y[M(x, y) \text{ accepts}] = 0.
\end{align*}
\]

\(\text{RP} \) with an error probability of \(e(n) \) may be written as \(\text{RP}_{e(n)} \).

If we start with a constant error probability, we can make it as small as \(1/2^{n^c} \) for any \(c \) in polynomially many iterations of the algorithm. This probability is small enough.

If we start with an error probability \(e(n) = 1 - 1/n^5 \), then

\[
(e(n))^{k(n)} = \left(1 - \frac{1}{n^5}\right)^{n^5 l(n)} \leq \left(\frac{1}{e}\right)^{l(n)},
\]

which is small enough if \(k(n) \) is a sufficiently large degree polynomial.

But if we start with an error probability \(e(n) = 1 - 1/2^n \), then we cannot make the error probability small enough after polynomially many iterations of the algorithm. In this case, \(\text{RP}_{e(n)} = \text{NP} \).

But \(\text{RP}_{1-1/poly(n)} = \text{RP}_{1-1/2^{o(l(n))}} \). So the class \(\text{RP} \) is robust with respect to large changes in the maximum permissible error probability.