
6.841 Advanced Complexity Theory Mar 02, 2009

Lecture 08
Lecturer: Madhu Sudan Scribe: Vartika Singh

1 Alternation

It is a notion which tries to capture languages in NP and CoNP in a unifying
way. It defines the time-vs-space relation and hence Alternating Turing Ma-
chines.
It is a means for finding lower bounds for certain languages for which there is
no obvious short certificate for membership and hence can not be characterized
using non determinism alone.

1.1 Alternating Turing Machines, ATM

Definition 1 Let M be an alternating TM. For a function T : N −→ N , we say
that M is an T (n)-time ATM if for every input x ∈ (0, 1)∗ and for every possible
sequence of transition function choices, M will halt after at most T (| x |) steps.

Alternating Turing Machines (ATM), are generalizations of TM with the addi-
tional internal states of ∃ or ∀. The ATM can be thought of as a tree, starting
from the root node. If the state reached is a deterministic one, then there is
only one move to make. If it is either of ∃ or ∀, then either of (0, 1) moves could
be made. Each node can be thought of as a configuration of M on input x,
and there is an edge from configuration C or C1, if latter can be obtained from
former in one step. The nodes up a computation path are labeled by repeatedly
applying the following rules, till they can not be applied anymore:

• The configuration Caccept where the machine is in qaccept is labeled “AC-
CEPT”.

• If a configuration C is in a state labeled exists and one of the configu-
rations C1 reachable from it in one step is labeled “ACCEPT” then we
label C “ACCEPT”.

• If a configuration C is in a state labeled ∀ and both the configurations C1

and C2 reachable from it one step is labeled “ACCEPT” then we label C
“ACCEPT”.

• If a configuration C is in a deterministic state then just proceed up as in
a unary computation.

08-1

We say that M accepts x if at the end of this process the starting configuration
Cstart is labeled ”ACCEPT”. The language accepted by M is the set of all x’s
such that M accepts x.
Three resources are important in defining the complexity of a ATM.

• TIME : ATIME(t(n)) = {L | L is decided by some t(n)-time ATM}

• SPACE :ASPACE(s(n)) = {L | L is decided by some s(n)-space ATM}

• Alternations : Most important resource that will be used is maximum
number of alternations done during the course of computation. (Note:
Flip from ∃ to ∃ state is not a valid alternation. Similarly for ∀.)

1.2 NDTMs and CoNDTMS

NDTM can viewed as a TM with extra existential state. The machine accepts
if one or more of its branches ends in an accept state.
CoNDTM can be viewed as a TM with universal quantifier states. At each
node, the machine can be thought of as spinning off two parallel actions and
taking BOTH paths at the same time. The machine accepts if all of its branches
end in the accept state.

2 Relation to Basic Complexity Classes

The question arises as to how much we can accomplish in alternating poly time
or in alternating logspace. Answering the above questions, we have the following
very intriguing concept of time and space:

• ATIME(poly) = PSPACE

• ASPACE(log n) = P

That is, time and space can be defined in terms of each other respectively.
We will now explore the relationship between the classes ATIME(t(n)), AS-
PACE(s(n)) and classical complexity classes defined using time or space bounded
deterministic Turing machines.

2.1 Relating ATIME and SPACE

Theorem 2 SPACE(s(n)) ⊆ ATIME(O(s(n)2)) ⊆ SPACE(O(s(n)2)).

Proof We first prove the second part of the theorem, i.e. ATIME(O(s(n)2)) ⊆
SPACE(O(s(n)2)). Assume a binary tree, wherein we can keep track of our
position by storing the control state, left or right head movement, symbol over-
written on the work tape and the outgoing transitions known to be accepting.
This information will enable us to propagate the computation backwards while
labeling the nodes of the tree. This all can be done in a space efficient man-
ner, requiring up to O(s(n)) space and the same amount of space for storing

08-2

the complete configuration of the node. Now, we simulate the ATM by a de-
terministic Turing machine in a depth first manner. Due to the space efficient
representation we are able to do this in O(s(n)) space and in the same space
we are able to propagate the computation back towards the root node. Since,
the computation is run down and then up across any computation branch, the
total time is of the order of O(s(n)2).
The first part of the theorem has proof lying conceptually in Savitch’s theorem.
We first specify the configuration of the Turing Machine M . It is the sequence
of symbols stating the configuration of the machine. Here, the machine uses
O(s(n)) space on its work tape, thus we need at least O(s(n)) bits to repre-
sent a configuration. The upper bound on the running time of such a machine
is 2O(s(n)). Given, the machine M , which is in SPACE(s(n)) we construct
a ATM T which runs in 2O(s(n)) time. We will use the following notation to
denote our problem:

REACH?(CI , CF , 2O(s(n)))

which says that given a start configuration CI , is it possible to reach a con-
figuration CF in (2O(s(n))) time. We do this by guessing the configuration at
the middle of the computation(existential) and then verifying whether all paths
terminate at CF , starting from CI configuration in 2O(s(n)) − 1 steps. We do
this recursively for each halve, till we can reach the point of difference in one
step. This constitutes one alternation. The running time is O(s(n) log(2O(s(n)))
or (s(n)2) time.
Thus, every existential quantifier to universal quantifier alternation implies,
quadratic blowup in time.

ATIME(poly) = PSPACE

2.2 Relating TIME and ASPACE

Theorem 3 ASPACE(O(s(n)) ⊆ TIME(2O(s(n))).

Proof Let O(s(n)) be s for notational efficiency. Now, for a space s ATM A,
there are 2s possible configurations. In order to tell what the machine is doing
at a particular state, we label each node as either existential, deterministic or
universal. If we look at the problem as reachability problem, the computation
path may keep looping forever and thus never terminate. Syntactically, such a
computation path should lead to a reject state. In order to bypass this problem,
we represent this huge graph in the form of layers, indexed from L0 to L2s .
Some of the nodes in a layer might be accepting or rejecting. This, implies that
a computation path has ended before reaching the L2sth layer. All the nodes
in L2sth layer are labeled rejecting, because in case a computation ever reaches
there, it would mean that it is a looping computation. We label one node in
layer L0 as start node and rest of the computation in the graph follows the

08-3

notion of a branch! ing program.
Now, this machine is running in TIME(2s). If we represent these 2s steps as
a square matrix, the (i, j) cell of which tell‘s us the current representation,
then the space required would be to the order of 2s. We can skimp on space
requirement significantly by observing that in order to check a cell in the tableau,
we need to just look at just 3 cells in the row above(as shown in figure 2), We

Figure 1: Figurer shows the tableau depicting the sequence of 2s possible
length O(s(n)) configurations.

define the problem as CELL?(2s, 1, qf), which says that, is the configuration
qf reachable if starting from configuration t, and does it takes the accept(1)
state(shown in fig 1(b)). We solve this problem generically by recursively asking
the question, CELL?(i, j, C4). This can be done in log 2s bits, as i and j need
so many and Ci‘s need only a constant number of bits. We can now write the
problem as: Guess a sequence of three cells C1, C2 and C3. Then, for all verify
that whether the following holds true:

CELL?(i− 1, j − 1, C1)
∧ CELL?(i− 1, j, C2)
∧ CELL?(i− 1, j + 1, C3)
∧ V ALID?((C1, C2, C3), C4, 1)

This can be done in constant time. Thus, CELL?(2s, 1, qf) runs in space
O(s(n)) and reaches the accepting configuration qf .

08-4

3 Fortnow’s Theorerm

Theorem 4

∀c <∞, ∃ε > 0 s.t.

SAT ∈ SPACE(c ˙logn) (1)

⇒ SAT /∈ TIME(n1+ε) (2)

3.1 Intuitive overview

Based on our belief that polynomial hierarchy does not collapse, it is implied
that NP 6= P . We conclude from this that SAT does not have a linear-time
algorithm, and that it does not have a log space algorithm. We will use alter-
nation to derive the following contradiction:
−→ If SAT ∈ TIME(N (1+ε))
⇒ Existential quantifier is not powerful
(Which would also mean that the universal quantifier is not powerful)
⇒ Alternation is not powerful.
←− SAT ∈ small space and for small spaces alternation is powerful.

Proof We will use the stronger version of Cook‘s Theorem, which states that
languages in NTIME(T (n)) reduce to SAT on formula of length T (n) log T (n).
We fix T(n) to be sufficiently large and we proceed to prove that TIME(T (n))
computation can find a satisfiability for problem of length T (n). (Which then
implies that SAT ∈ TIME(n1+ε).) Using the above, we proceed to prove
claim 1.

TIME(T (n)) ≈ SATformulaofsize ≈ T
(We know SAT is in logspace)
⊆ SPACE(c log(T (n)))

Now, we make the following claim for small space computations. Let a be the
number of alternations and s be the number of steps taken by the ATM M to
reach an accepting computation. Then,

∀a SPACE(s) ⊆ ATIME
[
a, a.s2s/a

]
Using the same theme as Savitch’s theorem, wherein, the computation time
(or configuration space) is continuously divided in half, we instead, divide the
computation time in sequence of k slices. We guess these k states. If the
state is existential we perform two alternations and guess the next computation
universally. Thus, for each computation of s steps, and taking into account
the branching, the number of times we do alternations is 2a. Thus, the total
time taken for this computation would be 2ak. Now, with each split, the size of
k = 2S/a. Thus, we have :

∀aSPACE(Os(n)) ⊆ ATIME
[
a, as2

s
a

]
08-5

Now, using the stronger form of Cook‘s theorem and the condition s = a,

∀aTIME(t) ⊆ ATIME
[
a, a log ttc/a

]
It is clear that alternation becomes very powerful in case of time.
Now, we prove the other side, that is alternation is not powerful. Assume, a tree,
with its root being an existential quantifier and a intermediate nodes labeled as
universal quantifiers and all the leaf nodes labeled as the existential quantifiers.
If we get rid of one existential node at the leaf level we have the inclusion:

ATIME [a, t] ⊆ ATIME
[
a− 1, t1+ε

]
We do a non-deterministic form of computation. If we proceed inductively down
the tree in the above manner, after eliminating all the existential nodes at the
leaf level, we eventually reach:

ATIME [a, t] ⊆ ATIME
[
0, t(1+ε)

a
]

If we pick ε to be sufficiently small then

ATIME [a, t] ⊆ TIME
[
t1+2aε

]
where ε � 1

a . Using the stronger version of Cook‘s theorem, we have the
following:

TIME(t(n)) ⊆ TIME(t(n)
c
a)1+2ε

. If we pick a sufficiently large, say for example, a = 2c, we have a statement
which contradicts time hierarchy theorem.

08-6

