1 Overview

- \(\text{PARITY} \notin \text{AC}^0 \).
- Random Restriction
- Switching Lemma \(\text{DNF} \rightarrow \text{CNF} \)

2 Introduction

We first introduce two sets of classes.

- \(\text{AC}^k \): Class of functions computable by polynomial size and \(O((\log n)^k) \) depth circuits over \(\{\infty - \text{AND}, \infty - \text{OR}, \text{NOT}\} \) gates.
- \(\text{NC}^k \): Class of functions computable by polynomial size and \(O((\log n)^k) \) depth circuits over \(\{2 - \text{AND}, 2 - \text{OR}, \text{NOT}\} \) gates.

We know that for any \(k \), \(\text{AC}^k \subseteq \text{NC}^{k+1} \subseteq \text{AC}^{k+1} \), so \(\bigcup_k \text{AC}^k = \bigcup_k \text{NC}^k \).

Through this lecture, we assume all circuits in \(\text{AC}^k \) are organized to have alternating levels of \(\text{AND} \) and \(\text{OR} \) gates. Because all \(\text{NOT} \) gates can be moved to the first level, and since the \(\text{AND} \) and \(\text{OR} \) gates have infinite fan-in, we can combine any consecutive \(\text{AND} \) or \(\text{OR} \) levels. So we can consider the depth as the number of \(\text{AND} \) and \(\text{OR} \) levels.

The goal of this lecture is to prove the following theorem: \(\text{PARITY} \notin \text{AC}^0 \). By \(\text{PARITY} \) we mean

\[
\text{PARITY}(x_1, x_2, \ldots, x_n) = \sum_i x_i \pmod{2}.
\]

Theorem 1 [Furst, Saxe, Sipser; Ajtai; Yao; Hästad; Razborov; Razborov-Smolensky]

\(\text{PARITY} \notin \text{AC}^0 \).

3 Random Restriction

If \(x_1, x_2, \ldots, x_n \) are variables, a random restriction on them is to randomly set values for most of the variables. Formally, we say a random restriction \(\rho \) with parameter \(p \), if for every \(i \), we leave \(x_i \) unset with probability \(p \), restrict it as \(x_i = 0 \) or \(x_i = 1 \) with equal probability \(\frac{1-p}{2} \).

\[
x_i = \begin{cases}
0 \text{ with prob. } \frac{1-p}{2} \\
 x_i \text{ with prob. } p \\
1 \text{ with prob. } \frac{1-p}{2}
\end{cases}
\]

If a function \(f \) has \(n \) variables, after this restriction, we get the function \(f|_\rho \) with about \(pn \) variables. Then

\[
\text{PARITY} |_\rho (x_1, x_2, \ldots, x_n) = \text{PARITY}(x_{i_1}, x_{i_2}, \ldots, x_{i_t})(\oplus 1) \quad (t \approx pn)
\]
4 Switching Lemma

Lemma 2 (Switching Lemma) Let F be a DNF formula on n variables with size $S \leq n^{c_1}$. Let ρ be a random restriction with $p = \frac{1}{\sqrt{n}}$.

\[
\Pr[F \mid \rho \text{ depends on } \geq C \text{ variables}] \leq \frac{1}{n^{2c_1}}
\]

C is a constant decided by c_1.

We will first use Switching Lemma to prove $\text{PARITY} \not\in \text{AC}^0$, then prove the Switching Lemma. Notice that we can always set the circuit’s bottom 2 levels to be DNF’s, because if it’s a CNF, we can just negate the circuit.

Theorem 1 $\text{PARITY} \not\in \text{AC}^0$

Proof We prove this by induction. The base of induction is not hard to see that, if a circuit of depth 2 computes PARITY then its size is $O(2^n)$.

If for every c and depth d, no depth d circuit of size $S = n^c$ computes PARITY. Now we prove this is also true for $d + 1$.

Say G is a circuit with depth $d + 1$ and size n^{c_1} that computes $\text{PARITY}(x_1, x_2, \ldots, x_n)$.

Hit G with random restriction ρ with parameter $p = \frac{1}{\sqrt{n}}$. We know the following:(a) According to Chernoff bound, we know with probability $(1 - 2^{-\sqrt{n}})$, there are at least $\frac{pn^2}{2} = \frac{\sqrt{n}^2}{2}$ variables are unset. (b) According to Switching Lemma, for every DNF formula, it depends on only C variables with probability $1 - \frac{1}{S^{2c_1}}$. (c) Since there are at most S DNF formula at the bottom, all depth 2 gates depend on $\leq C$ variables with probability $1 - \frac{1}{S}$. When all depth 2 gates depend on $\leq C$ variables, we can replace the bottom levels by CNF of size 2^C, then G becomes \tilde{G}. \tilde{G} computes PARITY of $\frac{\sqrt{n}^2}{2}$ unrestricted variables in a circuit with depth d and size $n^{c_1}2^C = \text{poly}(\frac{\sqrt{n}^2}{2})$. Contradiction to the induction hypothesis.

5 Proof of Switching Lemma

Let the DNF $F = T_1 \lor T_2 \lor \ldots \lor T_m$. We restrict variables in two stages

Stage 1

Restrict variable with probability \sqrt{p}, i.e.

\[
x_i = \begin{cases}
0 \text{ with prob. } \frac{1}{2} - \sqrt{p} \\
0 \text{ with prob. } \frac{1}{2} + \sqrt{p} \\
1 \text{ with prob. } \frac{1}{2} - \sqrt{p} \\
1 \text{ with prob. } \frac{1}{2} + \sqrt{p}
\end{cases}
\]

\[
f \rightarrow f|_{\rho_1}.
\]

Stage 2

Restrict variables in $f|_{\rho_1}$ with probability \sqrt{p}, i.e.

\[
x_i = \begin{cases}
0 \text{ with prob. } \frac{1}{2} - \sqrt{p} \\
0 \text{ with prob. } \frac{1}{2} + \sqrt{p} \\
1 \text{ with prob. } \frac{1}{2} - \sqrt{p} \\
1 \text{ with prob. } \frac{1}{2} + \sqrt{p}
\end{cases}
\]

\[
f|_{\rho_1} \rightarrow f|_{\rho_1 \cup \rho_2}.
\]

Stage 1

- **Case 1**: Terms with fan-in $\geq 4 \log S$

\[
\Pr[\text{Any Term with fan-in } \geq 4 \log S \neq 0] \leq \left(\frac{1 + \sqrt{\frac{3}{2}}}{2}\right)^{4 \log S} \leq \left(\frac{2}{3}\right)^{4 \log S} \leq \frac{1}{S^3}
\]
Therefore,
\[\Pr[\exists \text{ Term with fan-in } \geq 4 \log S \text{ doesn't become } 0] \leq \frac{1}{S^2} \]

- **Case 2:** Terms with fan-in \(\leq 4 \log S
\]
\[\Pr[T_i \text{ depends on } c_0 \text{ variables}] \leq (4 \log S)^{c_0} (\sqrt{p})^{c_0} \leq \frac{1}{S^3} \]

Therefore,
\[\Pr[\exists \text{ Term with fan-in } \leq 4 \log S, \text{ depends on } \geq c_0 \text{ variables}] \leq \frac{1}{S^2} \]

\(c_0 \) is a constant depend on \(c_1 \), so now the DNF is a \(c_0 \)-DNF.

Stage 2

- **Case 1:** \(\exists \) many disjoint Term \(T_1, T_2, \ldots, T_l, l \geq 3^{c_0} 4 \log S \).
\[\Pr[T_i = 1] \geq \left(\frac{1}{3} \right)^{c_0} \]
\[\Pr[T_i \neq 1] \leq (1 - \frac{1}{3})^{c_0} \]
\[\Pr[\exists T_i = 1] \geq 1 - (1 - \frac{1}{3})^{c_0} l = 1 - 2^{-l/3^{c_0}} \geq 1 - \frac{1}{S^2} \]

- **Case 2:** The max number of disjoint \(T_i \)'s \(\leq 4 \log S

Claim: \(\exists \) set \(H \) with \(4c_03^{c_0} \log S \) variables, s.t. \(\forall i \ H \cap T_i \neq \emptyset \).

Proof Select disjoint \(T_i \)'s greedily. When stop, variables in \(H \) hit all \(T_i \)'s.

- **Part a:** First restrict variables of \(H \); As in Case 2 of Stage 1, we can find a constant \(b \), s.t. the number of unset variables in \(H \leq b \).
- **Part b:** Now we restrict variables not in \(H \). And we use induction on \(c_0 \).

Induction hypothesis: Any \((c_0 - 1) \)-DNF under random restriction depends on only \(C' \) variables with high probability, \(C' \) is a constant.

Now we want to prove that \(c_0 \)-DNF under random restriction also only depends on constant many variables with high probability.

Claim: With high probability \(c_0 \)-DNF only depends on \(C \leq b + 2^b C' \) variables.

Proof After restricting variables in \(H \), enumerate all possible assignments of the \(b \) unset variables. After assigning values to these variables, the \(c_0 \)-DNF becomes a \((c_0 - 1) \)-DNF. According to the induction hypothesis, we know this depends on \(C' \) variables under restriction. So the \(c_0 \)-DNF depends on at most \(b + 2^b C' \) variables.