
Advanced Complexity Theory Instructor: Madhu Sudan
6.841/18.405J - Spring 2009 TA: Brendan Juba
Due: Wednesday, February 18, 2009

Problem Set 1

Problems

1. Non-deterministic time hierarchy:
Let L0 ∈ NTIME(n) be a unary language (i.e., L ⊆ {1}∗). Let n0 = 1, n1 = 2, . . . , ni+1 = 2ni ,
. . . denote the sequence of towers among the integers. Define L1 as follows: If n is not a tower
then 1n ∈ L1 iff 1n+1 ∈ L0. If n is a tower then 1n ∈ L1 iff 1log2 n 6∈ L0.

(a) Prove that L1 6= L0.

(b) Give the best function f that you can so that L1 ∈ NTIME(f(n)).

(c) Using the above give the best function g so that NTIME(n) (NTIME(g(n)).

2. Nondeterministic space-bounded computation:
The goal of this question is to ensure you can think about non-deterministic computation
concretely.

The language “PATH” is defined as

PATH = {(G, s, t) : G is a directed graph; s, t ∈ G; there is a path from s to t in G}.

(a) Write pseudo-code for a non-deterministic logspace (NL) algorithm for PATH.

(b) Write pseudo-code for a non-deterministic logspace (NL) algorithm for co-PATH, the
complement of PATH.

Verify that the above algorithms indeed use logarithmic space. (To think concretely about this
question, try to add ”non-deterministic” primitives to your pseudo-coding language. Useful
primitives would be “Guess x ∈ S” for some finite set S, and “If P then ACCEPT” or “If P
then CONTINUE” for some predicate P . P itself maybe computed by some non-deterministic
computation.)

3. Space-efficient Boolean matrix multiplication and consequences:
Given two n×n matrices A,B with Boolean entries, their boolean product A ·B is the matrix
C such that

Cij =
n∨

k=1

(aik ∧ bkj)

(a) Give a Logspace algorithm to compute A · B given A and B. (Food for thought: How
can the algorithm take less space than the output length?)

1

(b) Given matrix A and integer k, give a small space algorithm to compute Ak the kth
Boolean power of A. How much space does your algorithm use? What well-known
theorem follows from this algorithm?

4. Ladner’s general theorem:
Let L1, L2 be languages such that L1 is polynomial time reducible to L2 (denoted L1 ≤P L2),
but L2 is not polynomial time reducible to L1. Show that there exist 2 languages La and Lb

such that:

• L1 ≤P La ≤P L2

• L1 ≤P Lb ≤P L2

• La 6≤P Lb

• Lb 6≤P La

5. Approximation and Inapproximability:
The goal of this question is principally to test your ability to pose and use decision problems to
capture computational complexity. A secondary goal is to remind you about NP-completeness.

(a) The input to the ASYMMETRIC k-CENTER problem is a directed graph G = (V,E)
and an integer k. The output should be a subset S containing at most k vertices of
G that minimimzes the quantity maxx∈V {miny∈S{d(x, y)}}, where d(x, y) denotes the
length of the shortest path from x to y in G. (The graph may be assumed to be
weighted/unweighted depending on your preference.)
Show that the ASYMMETRIC k-CENTER problem is NP-hard to solve by posing an
appropriate decision problem, and showing this decision problem to be NP-complete.
(Hint: Reduce from Vertex Cover.)

(b) Let Obj(S) denote the quantity maxx∈V {miny∈S{d(x, y)}}. An α-approximation algo-
rithm for ASYMMETRIC k-CENTER is a polynomial time algorithm that, given (G, k),
outputs a set S with |S| = k such that for every S′ ⊆ V with |S′| = k, it is the case that
Obj(S) ≤ αObj(S′).
Show that there exists some α > 1 for which an α-approximation algorithm for the
ASYMMETRIC k-CENTER problem would imply NP=P. (The larger the α the better.)

(c) A promise problem is a class of “Boolean” computational problems given by a pair of
disjoint sets of instances Π = (ΠYES,ΠNO). (A standard decision problem is simply the
special case where ΠNO = ΠYES. An algorithm A decides a promise problem Π if for
every x ∈ ΠYES, A(x) = 1 and for every x ∈ ΠNO, A(x) = 0. An algorithm R reduces
a promise problem Π to a promise problem Γ if x ∈ ΠYES implies R(x) ∈ ΓYES and
x ∈ ΠNO implies R(x) ∈ ΓNO.
Given an integer c, describe a promise problem Π related to the ASYMMETRIC k-
CENTER problem such that the existence of a polynomial time reduction from Vertex
Cover to your problem Π would rule out the existence of a c-approximation algorithm
for the ASYMMETRIC k-CENTER problem unless NP=P. (So you have to describe
ΠYES and ΠNO. You don’t have to reduce Vertex Cover to this promise problem. What
you have to show is that if you assume such a reduction and also a c-approximation
algorithm for the ASYMMETRIC k-CENTER problem, you get NP=P.)

2

