Today: Amplification of BPP

- \text{BPP} \subseteq \text{PH}
- \text{BPP} \subseteq \Sigma_2^p \cap \Pi_2^p

Weak & Strong definitions of BPP

L \in \text{Strong BPP} \iff \nexists \text{ poly } q(n) \exists \text{ det. } \text{ poly-time } M(*,*) \text{ s.t. } \forall x \in \{0,1\}^n

\text{if } x \in L \implies \Pr[M(x,y) \text{ accepts}] \geq 1 - 2^{-2^{\Omega(n)}}

\text{if } x \notin L \implies \Pr[M(x,y) \text{ accepts}] \leq 2^{-2^{\Omega(n)}}
$L \in \text{Weak BPP}$ if \(\exists \) nice \(S(n) \) & poly \(p(n) \) and det. polytime \(M(\cdot, \cdot) \) s.t. \(\forall x \in \{0,1\}^n \):

\[
\begin{align*}
 x \in L & \implies \Pr \left[M(x, y) \text{ accepts} \right] \geq S(n) + \frac{1}{p(n)} \\
 x \notin L & \implies \Pr \left[M(x, y) \text{ accepts} \right] \leq S(n)
\end{align*}
\]

Amplification Theorem:

Strong BPP = Weak BPP

Proof: (of “\(\geq \)“)

Say \(L \in \text{Weak BPP} \) with m/c \(M, S(n), p(n) \)

Consider \(M' \) which does the following
\[M'(x; y_1, \ldots, y_t) \]

- Let \(Z_i = M(x, y_i) \)

\[\bar{Z} = \frac{\sum Z_i}{t} \]

- If \(\bar{Z} \geq s(n) + \frac{1}{2 \cdot p(n)} \) accept \(x_i \);
 else reject

To analyze need to know

What is the probability that if \(t \) i.i.d. (independent identically dist)
random variables \(Z_1, \ldots, Z_t \), \(Z_i \in [0, 1] \)
with expectation \(\mu \) take on average value \(\mu \pm \epsilon \)
Chernoff Bound:

if $Z_1 \ldots Z_t$ i.i.d. in $[0,1]$ &
$E[Z_i] = \mu$ then $P_r \left[\left| \frac{\sum Z_i}{t} - \mu \right| \geq \epsilon \right] \leq e^{-\frac{\epsilon^2 t}{2}}$

Applying to our case:

Say $x \in L$; then $E[Z_i] = s(n) + \frac{1}{\rho(n)}$

$P_r \left[\frac{\sum Z_i}{t} \leq (s(n) + \frac{1}{2 \cdot \rho(n)}) \right]$

$\leq P_r \left[\left| \frac{\sum Z_i}{t} - s(n) \right| \leq \frac{1}{2 \cdot \rho(n)} \right]$

$\leq \exp \left(- \frac{t}{\rho(n)^2} \right)$.

Picking $t \geq q(n) \cdot \rho(n)^2$ works.

(Similarly when $x \notin L$)
$\text{BPP} \leq \text{P}^\text{poly}$ \hspace{1cm} [\text{Adleman}]

- Sufﬁce to prove Strong BPP $\leq \text{P}^\text{poly}$.
- Say $L \in \text{Strong BPP}$.
 - Set $q(n) = 2^n$ and say M runs L in strong BPP.
- Say y wrong for x if
 \[M(x, y) \neq L(x) \]
- Fix x;
 \[\Pr[y \text{ wrong for } x] \leq \frac{1}{2^{2n}} \]
- \[\Pr[y \text{ s.t. } y \text{ wrong for } x] \leq \frac{2^n}{2^{2n}} = \frac{1}{2^n} \]
\[\Rightarrow \exists y \text{ s.t. } y \text{ not wrong for any } a. \]

- Use \(M \) as advice \(TM \) with advice \(y \). Always Right! \(\square \)

Implications:

\[\frac{100}{1} \]

\[\frac{10}{1} \]

\[\frac{my \ odds}{my \ odds} \]

\[NP \subseteq BPP \text{ (very unlikely)} \]

\[\Rightarrow NP \subseteq \mathbb{P}^{1 \text{/poly}} \]

\[\Rightarrow \text{PH collapses} \]

\[\Rightarrow \exists IHA \text{ (unlikely)} \]
\[\text{BPP} \leq \Sigma^p_2 \cap \Pi^p_2 \quad \text{[Sipser-Lautemann]} \]

Recall \(\Sigma^p_2 \)

Prosecution: "\(x \in L \)"

\[= \Pr \left[m(x, y) \text{ accepts} \right] \]

\(\quad \text{huge} \quad \text{tiny} \)

Defense: "What? me?"

\[\text{Jury decides.} \]
Idea 1:

Let Defense pick y ... but this is no good -- since $\exists y$ s.t. $M(x,y)$ rejects.

Idea 2:

Let Prosecution pick y ... but this is no good either

Idea 3: (almost works)

- Let Defense pick most bits of y
- Prosecution picks remaining few.

Idea 4: (cleaner implementation)

- Prosecution specifies $Y_1 \ldots Y_k$: k possible variations
- Defense picks y.
Idea 3 may work, but depends on M; Idea 4 cleaner

$$\Sigma_2^p \ni x \in L \quad (\text{BPP-decided by } M)$$

Prosecution

$$Y_1, \ldots, Y_k$$

Defense

$$y$$

Jury: Accept if $\exists i$ s.t.

$$M(x, y \oplus y_i) \text{ accepts}$$
Completeness: \(x \in L \Rightarrow \exists y_1, \ldots, y_k \text{ s.t.} \)

\[\forall y \]

\[\exists i \text{ s.t.} \]

\[M(x, y \oplus y_i) \text{ accepts.} \]

[Sort of like Adleman].

Proof: \(y_i \) wrong for \(y \) if \(M(x, y \oplus y_i) \) rejects.

- \(\Pr_{y_i} \left[y_i \text{ wrong for } y \right] \leq \frac{1}{2^{en}} \leq \frac{1}{2} \)

- \(\Pr_{y_1, \ldots, y_k} \left[y_1, \ldots, y_k \text{ all wrong for } y \right] \)

\[\left(\frac{1}{2^{en}} \right)^k \leq \frac{1}{2^k} \text{ [independent]} \]

- \(\Pr_{y_1, \ldots, y_k} \left[\exists y \text{ s.t.} \right] \leq \frac{\#y}{2^k} \)

Pick \(k \geq |y| + 1 \) we are ok.
\[\text{Now we're with the defense.} \]

Soundness: \(x \in L \Rightarrow \forall y \ldots y_k \exists y_i \text{ s.t.} \]

\(\forall i \) \(m(x, y \oplus y_i) \) reject.

Proof:

- \(y \) wrong for \(y_i \) if

\(M(x, y \oplus y_i) \) accepts.

- \(\Pr_y [y \text{ wrong for } y_i] \leq 2^{-2^n} \)

- \(\Pr_y [\exists i \in [1 \ldots k] \text{ s.t. } y \text{ wrong for } y_i] \leq k \cdot 2^{-2^n} \)

\[= 2|y| \cdot 2^{-2^n} \leq 1 \?

Set \(q(n) = n \); then \(|y| = n^c \) for some \(c \); for large enough \(n \)

above is \(< 1 \).
Implications

- Quantifiers do capture uncertainty

Randomized hierarchy

\[\text{promise } \text{RP} \supseteq (\Pi_y, \Pi_N) \]

\[\exists M \ni \forall x \in \Pi_y \Rightarrow R_y \left[M(x, y) \text{ accept} \right] \geq \frac{2}{3} \]

\[\exists x \in \Pi_N \Rightarrow \quad 0 \]

\[\text{promise } \text{BPP} \supseteq (\Pi_y, \Pi_N) \quad \forall \]

\[\forall x \in \Pi_y \Rightarrow \quad \geq \frac{2}{3} \]

\[\forall x \in \Pi_N \Rightarrow \quad \leq \frac{1}{3} \]
• $\text{promise RP} \leq \text{promise- BPP}$

• $\text{promise BPP} \leq \text{promise- BPP}$

• [Exercice]:

 $\text{promise- BPP} \leq \text{promise RP}$

• [Continued]:

 $P = \text{Promise-RP} \Rightarrow P = \text{Promise-BPP}$.
Next two lectures

Unique SAT;
Parity SAT; \# SAT;

\{ Counting \# solutions….

- Unique-SAT: Motivated by crypto & one-way permutations.

"Hard to invert functions in crypto" have unique inverse; but maybe "uniqueness" = easy?
Vahid-Vazirani:

Def: Unique SAT = (Π_Y, Π_N)

$\Pi_Y = \{ \phi \mid \exists ! x \ s.t. \phi(x) = 1 \}$

$\Pi_N = \{ \phi \mid \forall x \phi(x) = 0 \}$

[Wilf]: SAT \leq_R Unique-SAT

\leq_R: Randomized reduction!

$A \leq_R B$ if \exists prob. alg. R, s.t.

$x \in A_Y \Rightarrow R(x) \in B_Y$ w.p. $\geq \frac{1}{\text{poly} p}$

$x \in A_N \Rightarrow R(x) \in B_N$ w.p. 1.

[Warning: Doesn't amplify].
Idea: Guess # solutions to \(\phi \)

approximately. Say \(# \in [2^{m-1} + 1 \cdots 2^m] \)

- Pick "random" hash function (How? Later!)

\[h : \{0,1\}^n \rightarrow \{0,1\}^{m+c} \]

- Map \(\phi(x) \rightarrow \phi'(x) = \phi(x) \) and \(h(x) = (0\cdots0) \).

Claim: 1. \(\phi' \) can be computed in polytime from \(\phi \).

2. \(\exists x \) s.t. \(\phi'(x) = 1 \) \(\wp > 0 \).

3. \(x \) above is unique.
Ignoring (1) for now; can pick h totally at random.

Then (2):

$$\Pr\left[\exists x \in \mathcal{X} : h(x) = \overline{0} \right]$$

$$\geq 1 - \left(1 - \frac{1}{2^{m+c}} \right)^{2^{m-1}}$$

$$= \Omega\left(\frac{1}{2^c} \right)$$

(3):

$$\Pr\left[\exists x, y \in \mathcal{X} : h(x) = h(y) = \overline{0} \right]$$

$$\leq \frac{1}{2^{m+c}} \cdot \frac{1}{2^{m}} \cdot 2^{m} \cdot 2^{m}$$

$$= \mathcal{O}\left(\frac{1}{2^{2c}} \right) \ldots$$
Next Lecture:

- Using Pairwise Independent h.
- Formal analysis.