Today

1. Neciporuk's Lower Bound

2. Barrington's Theorem
 (proof due to Ben-Or + Cleve)

Review

Last time: A Non-uniform Models of Computation

1. Trees with advice
2. Circuits
3. Branching Programs
4. Formulae
Resources
- # bits of advice
- advice Thm. Time
- size
- depth
- width

Counting bounds

If I is a family of functions
then $\exists f \in I$ s.t.

$$\text{size}(f) \geq \Delta \left(\frac{\log (|I|)}{\log \log (|I|)} \right).$$
Proof: First, we will prove...
on first k coordinates.

How: Example

$$f(i, \overline{x}) = X_i$$ where

first i bits signify index from $1 \ldots 2^k$

& $\overline{x}_1 \ldots x_{n-2} = 2^k \cdot \text{bit string}$

$\forall \overline{x} \neq \overline{y}$

$$f_x(\cdot) \neq f_y(\cdot)$$

Where $f_x(i) = f(i, x)$.

Now BP for f gives BP for f_x for every x.

$$\# x's = 2^{n-k} < 2^n \implies \text{BP:size}(f) \geq \frac{1}{2} 5 \times 3$$
But this is sub-linear ... how to improve?

Idea 2: for $S \subseteq [n]$

$\text{BP-size}_S(f) = \# \text{ edges labelled with literals in } S$

Above proof actually implies

$\text{BP-size}_{\{1, \ldots, k\}}(f) \geq \frac{n}{\log n}$
Can we repeat this for other blocks.

Well ... not for same \(f \), but different one

Function: \(\text{DISTINCT?} \left(X_1, \ldots, X_{k_1}, X_{21}, \ldots, X_{2e}, \ldots, X_{l1}, X_{l2}, \ldots, X_{le} \right) \)

\[\text{DISTINCT?} \left(U_1, \ldots, U_e \right) = 1 \text{ if } \forall i \neq j \quad U_i \neq U_j \]

\[= 0 \text{ otherwise.} \]

Claim: \(\forall i, \# \text{ functions} \)

\[\left| \{ f \mid \left(U_i \right) = \text{DISTINCT}\left(a_1, \ldots, U_i, \ldots, a_e \right) \} \right| \geq \left(\frac{2^k \cdot l}{e} \right) ^{l-1} \]
Claim: $\text{BP-size}_{\text{Dist-ind}}(f) \geq \frac{n}{\log n}$

Claim: $\text{BP-size}(f) \geq \sum_{i} \text{BP-size}_{s_i}(f)$

Putting Claims Together: get

$\text{BP-size}(\text{Distinctness}) \geq \ell^2 k - \ell^2 \log \ell$

Letting $k = 2 \log \ell$ and $N = \ell^k$

get

$$\geq a \left(\frac{n^2}{\log^2 n} \right)$$

\Box (NECIPORUK)
Barrington (Ben-Or + Cleve):

Motivation:
- Can we use non-uniformity to prove $P = L$?

- Maybe we can argue that "simple" functions don't have small width BPs.

- But every CNF/DNF formula has width = 3 BP... of exponential size...

- Really need to show that no poly-size BP exists for some function in P.

Natural candidate: $\text{Majority}(x_1, \ldots, x_n) = 1 \iff \exists x: x \geq \frac{n}{2}$.
Barrington's Theorem:

If f has $O(n)$ width poly size BP

(\Rightarrow f has log-depth formula (over any finite basis))

\Rightarrow

(Other bases similar)
In above

\[f_i = 1 \text{ if top b.p. reaches } i^{th} \text{ state in mobile level} \]

\[g_i = 1 \text{ if bottom b.p. accepts starting at mobile level.} \]

\[\leftarrow \text{ Much harder (unexpected)} \]

Ben Or + Cleve's proof: Simple idea.

"Strong Induction"
Register Machines

Given by \(l \) registers \(R_1, \ldots, R_l \)

\(l \) \(S \) instructions

\(I_1 \)
\(I_2 \)
\[\vdots \]
\(I_s \)

\(I_j \): of the form \(R_i \leftarrow R_j + R_k \times R_l \)
or \(R_i \leftarrow R_j + X R_l \)
Register Machine computes \(f(x_1, \ldots, x_n) \)

\[f \Rightarrow (R_0, \ldots, R_{e-1}) \rightarrow (R_0, \ldots, R_{e-1}, R_e + f(\cdot) \cdot R_e) \]

Strong Hypothesis: if \(f \) has depth 1

\[\{ \text{AND, NOT} \} \] formula true

\[\exists \text{ size } 4^d, 3 \text{ register machine} \]

Prop: if \(f \) has size \(S \), \(l \)-register m/c

\[\Rightarrow f \text{ has size } O(S), 2^l \text{ width BP} \]

(8 in our case)
Proof:

\[
\begin{align*}
&\text{\(f \) computed by } M_i = \overline{I}_i \\
\Rightarrow &\text{ \((1-f)\) computed by } \overline{I}_s \\
\therefore &\overline{I}_s = \overline{I}_s \text{ replace by } -
\end{align*}
\]

\[
\overline{I}_{S+1} = R_e \leftarrow R_e + R_c
\]

(Previously \(R_e \) had \(R_e^0 - fR_c \) & \(R_c \leftarrow R_c^0 \)

Now: \(R_e \leftarrow R_e + (1-f)R_c^0 \)
Interesting one

\[f = f_1 \land f_2 \]

\[
\begin{align*}
R_1 & = f_1 \cdot R_1 \\
R_2 & = f_2 \cdot R_2 \\
R_3 & = f_3 \cdot R_3
\end{align*}
\]

\[
\begin{align*}
R_1 & = f_1 \cdot R_1 \\
R_2 & = f_2 \cdot R_2 + f_1 \cdot f_2 \cdot R_1 \\
R_3 & = f_3 \cdot R_3
\end{align*}
\]

\[
\begin{align*}
R_1 & = f_1 \cdot R_1 \\
R_2 & = f_2 \cdot R_2 + f_1 \cdot f_2 \cdot R_1 \\
R_3 & = f_3 \cdot R_3
\end{align*}
\]
\[R_1 = R_2 + f_{27} f_{28} R_3 \]