
Spring 2008 6.831 User Interface Design and Implementation 1

Lecture 8: Input

UI Hall of Fame or Shame?

Spring 2008 6.831 User Interface Design and Implementation 2

Source: Interface Hall of Shame

This message used to appear when you tried to
delete the contents of your Internet Explorer cache
from inside Windows Explorer (i.e., you browse to
the cache directory, select a file containing one of
IE’s browser cookies, and delete it).

Put aside the fact that the message is almost
tautological (“Cookie… is a Cookie”) and
overexcited (“!!”). Does it give the user enough
information to make a decision?

Hall of Shame

Spring 2008 6.831 User Interface Design and Implementation 3

Source: Interface Hall of Shame

Suppose you selected all your cookie files and tried
to delete them all in one go. You get one dialog for
every cookie you tried to delete! What button is
missing from this dialog?

Hall of Fame or Shame?

Spring 2008 6.831 User Interface Design and Implementation 4

Source: Interface Hall of Shame

One way to fix the too-many-questions problem is
Yes To All and No To All buttons, which short-
circuit the rest of the questions by giving a blanket
answer. That’s a helpful shortcut, but this
example shows that it’s not a panacea.

This dialog is from Microsoft’s Web Publishing
Wizard, which uploads local files to a remote web
site. Since the usual mode of operation in web
publishing is to develop a complete copy of the
web site locally, and then upload it to the web
server all at once, the wizard suggests deleting files
on the host that don’t appear in the local files, since
they may be orphans in the new version of the web
site.

But what if you know there’s a file on the host that
you don’t want to delete? What would you have to
do?

Hall of Fame

Spring 2008 6.831 User Interface Design and Implementation 5

If your interface has a potentially large number of
related questions to ask the user, it’s much better to
aggregate them into a single dialog. Provide a list
of the files, and ask the user to select which ones
should be deleted. Select All and Unselect All
buttons would serve the role of Yes to All and No
to All.

Here’s an example of how to do it right, found in
Eclipse. If there’s anything to criticize in Eclipse’s
dialog box, it might be the fact that it initially
doesn’t show the filenames, just their count --- you
have to press Details to see the whole dialog box.
Simply knowing the number of files not under CVS
control is rarely enough information to decide
whether you want to say yes or no, so most users
are likely to press Details anyway.

Today’s Topics

• Input events
• Event dispatch
• Event propagation

Spring 2008 6.831 User Interface Design and Implementation 6

Today’s lecture continues our look into the
mechanics of implementing user interfaces, by
looking at input in more detail.

Our goal for these implementation lectures is not to
teach any one particular GUI system or toolkit, but
to give a survey of the issues involved in GUI
programming and the range of solutions adopted by
various systems. Presumably you’ve already
encountered at least one GUI toolkit, probably Java
Swing. These lectures should give you a sense for
what’s common and what’s unusual in the toolkit
you already know, and what you might expect to
find when you pick up another GUI toolkit.

Why Use Events for GUI Input?

• Console I/O uses blocking procedure calls
print (“Enter name:”)
name = readLine();
print (“Enter phone number:”)
name = readLine();

– System controls the dialogue
• GUI input uses event handling instead

– User has much more control over the dialogue
– User can click on almost anything

Spring 2008 6.831 User Interface Design and Implementation 7

Virtually all GUI toolkits use event handling for
input. Why? Recall, when you first learned to
program, you probably wrote user interfaces that
printed a prompt and then waited for the user to
enter a response. After the user gave their answer,
you produced another prompt and waited for
another response. Command-line interfaces (e.g.
the Unix shell) and menu-driven interfaces (e.g.,
Pine) have interfaces that behave this way. In this
user interface style, the system has complete
control over the dialogue – the order in which
inputs and outputs will occur.

Interactive graphical user interfaces can’t be
written this way – at least, not if they care about
giving the user control and freedom. One of the
biggest advantages of GUIs is that a user can click
anywhere on the window, invoking any command
that’s available at the moment, interacting with any
view that’s visible. In a GUI, the balance of power
in the interaction swings strongly over to the user’s
side.

As a result, GUI programs can’t be written in a
synchronous, prompt-response style. A component
can’t simply take over the entire input channel to
wait for the user to interact with it, because the
user’s next input may be directed to some other
component on the screen instead. So GUI
programs are designed to handle input
asynchronously, receiving it as events.

Kinds of Input Events

• Raw input events
– Mouse moved
– Mouse button pressed or released
– Key pressed or released

• Translated input events
– Mouse click or double-click
– Mouse entered or exited component
– Keyboard focus gained or lost (loss of focus is

sometimes called “blur”)
– Character typed

Spring 2008 6.831 User Interface Design and Implementation 8

There are two major categories of input events: raw
and translated.

A raw event comes right from the device driver.
Mouse movements, mouse button down and up,
and keyboard key down and up are the raw events
seen in almost every capable GUI system. A toolkit
that does not provide separate events for down and
up is poorly designed, and makes it difficult or
impossible to implement input effects like drag-
and-drop or video game controls.

For many GUI components, the raw events are too
low-level, and must be translated into higher-level
events. For example, a mouse button press and
release is translated into a mouse click event
(assuming the mouse didn’t move much between
press and release – if it did, these events would be
translated into a drag rather than a click). Key
down and up events are translated into character
typed events, which take modifiers into account to
produce an ASCII character rather than a keyboard
key. If you hold a key down, multiple character
typed events may be generated by an autorepeat
mechanism. Mouse movements and clicks also
translate into keyboard focus changes. When a
mouse movement causes the mouse to enter or
leave a component’s bounding box, entry and exit
events are generated, so that the component can
give feedback – e.g., visually highlighting a button,
or changing the mouse cursor to a text I-bar or a
pointing finger.

Properties of an Input Event

• Mouse position (X,Y)
• Mouse button state
• Modifier key state (Ctrl, Shift, Alt, Meta)
• Timestamp

– Why is timestamp important?

Spring 2008 6.831 User Interface Design and Implementation 9

Input events have some or all of these properties.
On most systems, all events include the modifier
key state, since some mouse gestures are modified
by Shift, Control, and Alt. Some systems include
the mouse position and button state on all events;
some put it only on mouse-related events.

The timestamp indicates when the input was
received, so that the system can time features like
autorepeat and double-clicking. It is essential that
the timestamp be a property of the event, rather
than just read from the clock when the event is
handled. Events are stored in a queue, and an event
may languish in the queue for an uncertain interval
until the application actually handles it.

Event Queue

• Events are stored in a queue
– User input tends to be bursty
– Queue saves application from hard real time

constraints (i.e., having to finish handling each
event before next one might occur)

• Mouse moves are coalesced into a single
event in queue
– If application can’t keep up, then sketched lines

have very few points

Spring 2008 6.831 User Interface Design and Implementation 10

User input tends to be bursty – many seconds may
go by while the user is thinking, followed by a
flurry of events. The event queue provides a buffer
between the user and the application, so that the
application doesn’t have to keep up with each event
in a burst. Recall that perceptual fusion means that
the system has 100 milliseconds in which to
respond.

Edge events (button down and up events) are all
kept in the queue unchanged. But multiple events
that describe a continuing state – in particular,
mouse movements – may be coalesced into a single
event with the latest known state. Most of the time,
this is the right thing to do. For example, if you’re
dragging a big object across the screen, and the
application can’t repaint the object fast enough to
keep up with your mouse, you don’t want the
mouse movements to accumulate in the queue,
because then the object will lag behind the mouse
pointer, diligently (and foolishly) following the
same path your mouse did.

Sometimes, however, coalescing hurts. If you’re
sketching a freehand stroke with the mouse, and
some of the mouse movements are coalesced, then
the stroke may have straight segments at places
where there should be a smooth curve. If
something running in the background causes
occasional long delays, then coalescing may hurt
even if your application can usually keep up with
the mouse.

Event Loop

• While application is running
– Block until an event is ready
– Get event from queue
– (sometimes) Translate raw event into higher-level events

• Generates double-clicks, characters, focus, enter/exit, etc.
• Translated events are put into the queue

– Dispatch event to target component
• Who provides the event loop?

– High-level GUI toolkits do it internally (Java Swing, VB, C#,
HTML)

– Low-level toolkits require application to do it (MS Win, Palm,
Java SWT)

Spring 2008 6.831 User Interface Design and Implementation 11

The event loop reads events from the queue and
dispatches them to the appropriate components in
the view hierarchy. On some systems (notably
Microsoft Windows), the event loop also includes a
call to a function that translates raw events into
higher-level ones. On most systems, however,
translation happens when the raw event is added to
the queue, not when it is removed.

Every GUI program has an event loop in it
somewhere. Some toolkits require the application
programmer to write this loop (e.g., Win32); other
toolkits have it built-in (e.g., Java Swing).

Unfortunately, Java’s event loop is written as
essentially an infinite loop, so the event loop thread
never cleanly exits. As a result, the normal clean
way to end a Java program – waiting until all the
threads are finished – doesn’t work for GUI
programs. The only way to end a Java Swing GUI
program is System.exit(). This is true despite the
fact that Java best practices say not to use
System.exit(), because it doesn’t guarantee to
garbage collect and run finalizers.

Swing lets you configure your application’s main
JFrame with EXIT_ON_CLOSE behavior, but this
is just a shortcut for calling System.exit().

Event Dispatch & Propagation

• Dispatch: choose target component for event
– Key event: component with keyboard focus
– Mouse event: component under mouse

• Mouse capture: any component can grab mouse
temporarily so that it receives all mouse events (e.g. for
drag & drop)

• Propagation: if target component declines to
handle event, the event passes up to its
parent

Spring 2008 6.831 User Interface Design and Implementation 12

Event dispatch chooses a component to receive the
event. Key events are sent to the component with
the keyboard focus, and mouse events are generally
sent to the component under the mouse. An
exception is mouse capture, which allows any
component to grab all mouse events (essentially a
mouse analogue for keyboard focus). Mouse
capture is done automatically by Java when you
hold down the mouse button to drag the mouse.
Other UI toolkits give the programmer direct access
to mouse capture – in the Windows API, for
example, you’ll find a SetMouseCapture function.

If the target component declines to handle the
event, the event propagates up the view hierarchy
until some component handles it. If an event
bubbles up to the top without being handled, it is
ignored.

Javascript Event Models

• Events propagate in different directions on
different browsers
– Netscape 4: downwards from root to target
– Internet Explorer: upwards from target to root
– W3C standardized by combining them: first

downwards (“capturing”), then upwards
(“bubbling”)

• Firefox, Opera, Safari

Spring 2008 6.831 User Interface Design and Implementation 13

The previous slide describes how virtually all
desktop toolkits do event dispatch and propagation.
Alas, the Web is not so simple.

Early versions of Netscape propagated events down
the view hierarchy, not up. (On the Web, the view
hierarchy is a tree of HTML elements.) Netscape
would first determine the target of the event (using
mouse position or keyboard focus, as we explained
earlier). But instead of sending the event directly
to the target, it would first try sending it to the root
of the tree, and so forth down the ancestor chain
until it reached the target. Only if none of its
ancestors wanted the event would the target
actually receive it.

Alas, Internet Explorer’s model was exactly the
opposite – like the conventional desktop event
propagation, IE propagated events upwards. If the
target had no registered handler for the event (and
no default behavior either, like a hyperlink does),
then the event would propagate upwards through
the tree.

The W3C consortium, in its effort to standardize
the Web, combined the two models, so that events
first propagate downwards to the target (a phase
called “event capturing”, not to be confused with
mouse capture), and then back upwards again
(“event bubbling”). You can register event
handlers for both phases if you want. Modern
standards-compliant browsers, like Firefox and
Opera, support this model.

Designing a Controller

• A controller is a finite state machine
• Example: push button

Spring 2008 6.831 User Interface Design and Implementation 14

Hover

Armed

Disarmed

press

Idle

mouse enter

mouse exit

exitenterrelease
(invoke)

release

Now let’s look at how components that handle
input are typically structured. A controller in a
direct manipulation interface is a state machine.
Here’s an example of the state machine for a push
button’s controller. Idle is the normal state of the
button when the user isn’t directing any input at it.
The button enters the Hover state when the mouse
enters it. It might display some feedback to
reinforce that it affords clickability. If the mouse
button is then pressed, the button enters the Armed
state, to indicate that it’s being pushed down. The
user can cancel the button press by moving the
mouse away from it, which goes into the Disarmed
state. Or the user can release the mouse button
while still inside the component, which invokes the
button’s action and returns to the Hover state.

Transitions between states occur when a certain
input event arrives, or sometimes when a timer
times out. Each state may need different feedback
displayed by the view. Changes to the model or the
view occur on transitions, not states: e.g., a push
button is actually invoked by the release of the
mouse button.

Another Finite State Machine

Spring 2008 6.831 User Interface Design and Implementation 15

Idle Dragging Can’t Drop

Mouse press

Mouse release
(do the drop)

Mouse move
(over illegal target)

Mouse move
(over legal target)

Escape press
(cancel drop)

Mouse release,
Escape press
(cancel drop)

Here’s a state machine suitable for drag & drop.

Notice how each state of the machine produces
different visual feedback, in this case the shape of
the cursor. (The pushbutton on the last page had
the same property.) This is a common case in input
implementation, since different states of an input
controller often represent different modes from the
user’s point of view, and distinguishing those
modes with visual feedback helps reduce mode
errors.

Visual feedback can also happen on the transitions,
but it may have to be animated to be effective,
because the transitions are very brief (like pressing
or releasing a button).

Interactors

• Generic reusable controllers (Garnet and Amulet toolkits)
– Selection interactor
– Move/Grow interactor
– New-point interactor
– Text editing interactor
– Rotating interactor

• Hide the details of handling input events and finite state
machines

• Useful only in a component model
• Parameterized

– start, stop, abort events
– start location, inside/outside predicates
– feedback components
– callback procedures on event transitions

Spring 2008 6.831 User Interface Design and Implementation 16

An alternative approach to handling low-level input
events is the interactor model, introduced by the
Garnet and Amulet research toolkits from CMU.
Interactors are generic, reusable controllers, which
encapsulate a finite state machine for a common
task. They’re mainly useful for the component
model, in which the graphic output is represented
by objects that the interactors can manipulate.

