
Spring 2008 6.831 User Interface Design and Implementation 1

Lecture 5: Task Analysis

UI Hall of Fame or Shame?

Fall 2006 6.831 UI Design and Implementation 2

Today’s candidate for the Hall of Fame & Shame is
the Alt-Tab window switching interface in
Microsoft Windows. This interface has been
copied by a number of desktop systems, including
KDE, Gnome, and even Mac OS X.

For those who haven’t used it, here’s how it works.
Pressing Alt-Tab makes this window appear. As
long as you hold down Alt, each press of Tab
cycles to the next window in the sequence.
Releasing the Alt key switches to the window that
you selected.

We’ll discuss this example in class. Here are a few
things to think about:

- how learnable is this interface?

- what about efficiency?

- what kinds of errors can you make, and how can
you recover from them?

UI Hall of Fame or Shame?

Fall 2006 6.831 UI Design and Implementation 3

For comparison, we’ll also look at the Exposé
feature in Mac OS X. When you push F9 on a
Mac, it displays all the open windows – even
hidden windows, or windows covered by other
windows – shrinking them as necessary so that they
don’t overlap. Mousing over a window displays its
title, and clicking on a window brings that window
to the front and ends the Exposé mode, sending all
the other windows back to their old sizes and
locations.

Today’s Topics

• User analysis
• Task analysis
• Domain analysis
• Requirements analysis

Spring 2008 6.831 User Interface Design and Implementation 4

We’ve seen that UI design is iterative – that we
have to turn the crank several times to achieve good
usability. How do we get started? How do we
acquire information for the initial design?

Today’s lecture is about the process of collecting
information about users and their tasks, which is
the first step in user-centered design. We’ll talk
about four key steps:

User analysis: who is the user?

Task analysis: what does the user need to
do?

Domain analysis: what is the context the
user works in (the people and things
involved)?

Requirements analysis: what requirements
do the preceding three analyses impose on
the design?

Know Thy User

• Identify characteristics of target user
population
– Age, gender, culture, language
– Education (literacy? numeracy?)
– Physical limitations
– Computer experience (typing?)
– Motivation, attitude
– Domain experience
– Application experience
– Work environment and other social context
– Relationships and communication patterns

Spring 2008 6.831 User Interface Design and Implementation 5

The reason for user analysis is straightforward:
since you’re not the user, you need to find out who
the user actually is.

User analysis seems so obvious that it’s often
skipped. But failing to do it explicitly makes it
easier to fall into the trap of assuming every user is
like you. It’s better to do some thinking and collect
some information first.

Knowing about the user means not just their
individual characteristics, but also their situation.
In what environment will they use your software?
What else might be distracting their attention?
What is the social context? A movie theater, a quiet
library, inside a car, on the deck of an aircraft
carrier; environment can place widely varying
constraints on your user interface.

Other aspects of the user’s situation include their
relationship to other users in their organization, and
typical communication patterns. Can users ask
each other for help, or are they isolated? How do
students relate differently to lab assistants, teaching
assistants, and professors?

Multiple Classes of Users

• Many applications have several kinds of
users
– By role (student, teacher)
– By characteristics (age, motivation)

• Example: Olympic Message System
– Athletes
– Friends & family
– Telephone operators
– Sysadmins

Spring 2008 6.831 User Interface Design and Implementation 6

Many, if not most, applications have to worry about
multiple classes of users.

Some user groups are defined by the roles that the
user plays in the system: student, teacher, reader,
editor.

Other groups are defined by characteristics: age
(teenagers, middle-aged, elderly); motivation (early
adopters, frequent users, casual users). You have to
decide which user groups are important for your
problem, and do a user analysis for every class.

The Olympic Message System case study we saw
in a previous lecture identified several important
user classes by role.

Personas

• A persona is a fictitious character used as a
specific representative of a user class
– Yoshi is a 20-year-old pole vaulter from Tokyo

who speaks some English
– Bob is an IBM sysadmin in New York
– Fritz is the 50-year-old father of a German

swimmer
• Advantages

– Convenient handle for talking about user classes
– Focuses on a typical user, rather than an extreme
– Encourages empathy

Spring 2008 6.831 User Interface Design and Implementation 7

One popular technique for summarizing user
classes is to give each user class a fictional
representative, with typical characteristics and
often a little back story. These representatives are
called personas.

Personas are useful shorthand for a design group;
you can say things like “let’s think about how
Yoshi would do this”, rather than a mouthful like
“non-English-speaking athlete.” They also help
focus attention on typical members of the user
class, rather than extremes. And by putting a
human face on a user class, albeit an imaginary
one, they can encourage you to have more empathy
for a user class that’s very different from your own.
(Alan Cooper, The Inmates are Running the
Asylum, 1999).

How To Do User Analysis

• Techniques
– Questionnaires
– Interviews
– Observation

• Obstacles
– Developers and users may be systematically

isolated from each other
• Tech support shields developers from users
• Marketing shields users from developers

– Some users are expensive to talk to
• Doctors, executives, union members

Spring 2008 6.831 User Interface Design and Implementation 8

The best way to do user analysis is to find some
representative users and talk to them.
Straightforward characteristics can be obtained by a
questionnaire. Details about context and
environment can be obtained by interviewing users
directly, or even better, observing them going
about their business, in their natural habitat.

Sometimes it can be hard to reach users. Software
companies can erect artificial barriers between
users and developers, for their mutual protection.
After all, if users know who the developers are,
they might pester them with bugs and questions
about the software, which are better handled by
tech support personnel. The marketing department
may be afraid to let the developers interact with the
users – not only because geeks can be scary, but
also because usability discussions may make
customers dissatisfied with the current product. (“I
hadn’t noticed it before, but that DOES suck!”)

Some users are also expensive to find and talk to.
Nevertheless, make every effort to collect the
information you need. A little money spent
collecting information initially should pay off
significantly in better designs and fewer iterations.

Task Analysis

• Identify the individual tasks the program
might solve

• Each task is a goal (what, not how)
• Often helps to start with overall goal of the

system and then decompose it
hierarchically into tasks

Spring 2008 6.831 User Interface Design and Implementation 9

The next step is figuring out what tasks are
involved in the problem. A task should be
expressed as a goal: what needs to be done, not
how.

One good way to get started on a task analysis is
hierarchical decomposition. Think about the
overall problem you’re trying to solve. That’s
really the top-level task. Then decompose it into a
set of subtasks, or subgoals, that are part of
satisfying the overall goal.

Essential Parts of Task Analysis

• What needs to be done?
– Goal

• What must be done first to make it possible?
– Preconditions

• Tasks on which this task depends
• Information that must be known to the user

• What steps are involved in doing the task?
– Subtasks
– Subtasks may be decomposed recursively

Spring 2008 6.831 User Interface Design and Implementation 10

Once you’ve identified a list of tasks, fill in the
details on each one. Every task in a task analysis
should have at least these parts.

The goal is just the name of the task, like “send an
email message.”

The preconditions are the conditions that must be
satisfied before it’s reasonable or possible to
attempt the task. Some preconditions are other
tasks in your analysis; e.g., before you can listen to
your messages in the Olympic Message System,
you first have to log in. Other preconditions are
information needs, things the user needs to know
in order to do the task. For example, in order to
send an email message, I need to know the email
addresses of the people I want to send it to; I may
also need to look at the message I’m replying to.

Preconditions are vitally important to good UI
design, particularly because users don’t always
satisfy them before attempting a task, resulting in
errors. Knowing what the preconditions are can
help you prevent these errors, or at least render
them harmless. For example, a precondition of
starting a fire in a fireplace is opening the flue, so
that smoke escapes up the chimney instead of
filling the room. If you know this precondition as a
designer, you can design the fireplace with an
interlock that ensures the precondition will be met.
Another design solution is to offer opportunities to
complete preconditions: for example, an email
composition window should give the user access to
their address book to look up recipients’ email
addresses.

Finally, decompose the task into subtasks,
individual steps involved in doing the task. If the
subtasks are nontrivial, they can be recursively
decomposed in the same manner.

Example from OMS

• Goal
– Send message to another athlete

• Preconditions
– Must know: my country code, my username, my

password, the other athlete’s name
• Subtasks

– Log in (identify yourself)
– Identify recipient
– Record message
– Hang up

Spring 2008 6.831 User Interface Design and Implementation 11

Here’s an example of a task from the Olympic
Message System.

Other Questions to Ask About a Task

• Where is the task performed?
– At a kiosk, standing up

• What is the environment like? Noisy, dirty, dangerous?
– Outside

• How often is the task performed?
– Perhaps a couple times a day

• What are its time or resource constraints?
– A minute or two (might be pressed for time!)

• How is the task learned?
– By trying it
– By watching others
– Classroom training? (probably not)

• What can go wrong? (Exceptions, errors, emergencies)
– Enter wrong country code
– Enter wrong user name
– Get distracted while recording message

• Who else is involved in the task?

Spring 2008 6.831 User Interface Design and Implementation 12

There are lots of questions you should ask about
each task. Here are a few, with examples relevant
to the OMS send-message task.

How to Do a Task Analysis

• Interviews with users
• Direct observation of users performing tasks

Spring 2008 6.831 User Interface Design and Implementation 13

The best sources of information for task analysis
are user interviews and direct observation. Usually,
you’ll have to observe how users currently perform
the task. For the OMS example, we would want to
observe athletes interacting with each other, and
with family and friends, while they’re training for
or competing in events. We would also want to
interview the athletes, in order to understand better
their goals in the task.

Domain Analysis

• Identify important things in the domain
– People (user classes)

• Athletes, friends & family, sysadmins

– Physical objects
• Namecard, telephone

– Information objects
• Messages, accounts

Spring 2008 6.831 User Interface Design and Implementation 14

Athlete

Sysadmin

Namecard

Account

Message

The third step is domain analysis, which discovers
the elements of the domain and how they’re related
to each other. If you took 6.170 or a similar
software engineering class, you did domain
analysis by drawing object model diagrams or
entity-relationship diagrams. That’s what we’ll do
too.

To draw a domain diagram, you first need to
identify the entities of the domain – the things that
are involved. Entities include people, physical
objects, and information objects. User classes
defined by role should certainly be entities; user
classes defined by characteristics generally aren’t.

Sometimes you need to include people in the
domain model that you haven’t identified as user
classes, because they’re involved in the system but
aren’t actually users of the interface you’re
designing. For example, an IM client needs to
represent Buddies, but they aren’t a user class. A
hospital information management system needs to
represent Patients even if they won’t actually touch
the UI.

Draw each kind of entity as a labeled box, as shown
here. Note that you should think about these boxes
as representing a set of objects – so the Athlete box
is the set of all athletes in OMS.

Domain Analysis

• Determine important relations between the things
– Athletes have accounts
– Accounts have messages
– Family & friends know athletes
– Sysadmins register athletes or create accounts

Spring 2008 6.831 User Interface Design and Implementation 15

Athlete

Sysadmin

Account Message

create

account messages

Next, determine the relationships between the
entities that matter to your problem, and draw them
as edges. Here are some examples from the OMS.
Relationships are usually labeled as verbs (create,
know), but with generic relationships like “have”
(also called “has-a”), it’s more readable to label it
with a noun, analogous to a field or property name
(the athlete’s “account”, the account’s “messages”).

Another kind of relationship is classification, or
“is-a”. You can use this to show that several entity
classes are subclasses of a larger one – e.g.,
Lecturers and TAs are subclasses of Instructors.

Domain Analysis

• Identify multiplicities of things and relations
– Numbers are best, but simple multiplicity

indicators (!,?,+,*) help too

Spring 2008 6.831 User Interface Design and Implementation 16

Athlete
10,000

Sysadmin
100

Account Message

create

account messages

! 10 [0-100]

Finally, add multiplicities showing the sizes of
entity sets and relationships. The multiplicity of an
entity set is the number of members of that set in
the system; for example, there were about 10,000
athletes in OMS. The multiplicity of a relation is
the number of targets per source; for example, an
athlete has exactly one account, and each account
might have 10 messages stored in it.

Why do we want multiplicities? They will be
useful in later design, both for thinking about your
backend (10 million messages have to be stored
much differently than 100 messages) and your user
interface (10,000 messages must be displayed and
manipulated much differently than 10 messages).

If there’s some uncertainty in your estimate, or if
the multiplicity will vary in actual use, then show a
typical value plus a range. In the diagram here,
we’re showing that we expect a typical account to
have 10 messages, with as few as 0 messages but
possibly as many as 100. The best multiplicity
estimates are based on actual data or observation.
If you’re building an email system, for example,
find out how large users’ inboxes actually are, by
measuring existing email practices.

Note that you don’t have to mark every
multiplicity, because many of them can be deduced
from other multiplicities. For example, what is the
multiplicity of the Message set, given the other
information on the diagram?

You can abbreviate common multiplicities with

symbols: ! means exactly 1, ? means 0 or 1, +
means 1 or more, and * means 0 or more. Use +
and * when more precise estimates aren’t likely to
change the system design, either the backend or the
UI.

Feedback to User & Task Analysis

• People entities who really should be user
classes

• Missing tasks
– CRUD: Create, Read, Update, Delete

Spring 2008 6.831 User Interface Design and Implementation 17

After doing some domain analysis, you can use it to
think about whether your user and task analysis
was complete. For example, you may have
identified new people entities who really should be
user classes of your system. Maybe Patients should
be users of the hospital information system, and a
user interface should be created that supports their
tasks.

Your domain analysis may have also identified
physical or information objects that don’t seem to
be involved in any of the tasks you specified. That
could be a sign that your domain analysis is broader
or more detailed than you really need, or it could be
a sign that you missed some tasks.

One heuristic that you can use for information
objects is CRUD. For every information object,
consider whether you need low-level tasks for
Creating, Reading (viewing information about),
Updating (changing the information), and Deleting
the objects. Consider Messages in the OMS
example: friends and family need to record
messages (Create), athletes need to listen to them
(Read), and athletes need to delete them (Delete).
We’re missing the Update task. Maybe that’s
because messages should be immutable, like face-
to-face speech is; once something comes out of
your mouth, you can’t modify it. But maybe
editing a message is something we could consider
in the design. In any case, by checking for CRUD,
we might find tasks we didn’t observe in the task
analysis.

Requirements Analysis

• Requirements: what should the system do?

Spring 2008 6.831 User Interface Design and Implementation 18

Requirements

Users

Tasks

Domain

User, task, and domain analysis feed into a more
general process called requirements analysis,
which creates a description of the system’s desired
functionality and other nonfunctional properties
(like performance, security, and capacity).

Without user and task analysis, requirements are
incomplete. User and task analysis contribute
additional functionality (tasks that users need to do
which may not be evident from the domain analysis
alone) as well as nonfunctional requirements about
usability (like how efficient certain tasks should
be, or how learnable, or how memorable) and about
other properties of the system as well (e.g.,
accommodation for users’ physical limitations, like
impaired vision). For example, here are some of
the requirements in the OMS system that might
come out of user and task analysis:

•Support twelve languages (because athletes,
friends & family don’t all speak the same language)

•Support non-touchtone phones (because friends &
family don’t all have them)

•Check Messages task should take less than 30
seconds (because athletes may be pressed for time)

Common Errors in User Analysis

• Describing what your ideal users should be, rather than what
they actually are
– “Users should be literate in English, fluent in spoken Swahili, right-

handed, and color-blind”

Spring 2008 6.831 User Interface Design and Implementation 19

Many problems in user and task analysis are caused
by jumping too quickly into a requirements
mindset. In user analysis, this sometimes results in
wishful thinking, rather than looking at reality.
Saying “OMS users should all have touchtone
phones” is stating a requirement, not a
characteristic of the existing users. One reason we
do user analysis is to see whether these
requirements are actually satisfied, or whether we’d
have to add something to the system to make sure
it’s satisfied. For example, maybe we’d have to
offer touchtone phones to every athlete’s friends
and family…

Common Errors in Task Analysis

• Thinking from the system’s point of view, rather than the user’s
– “Notify user about appointment”
– vs. “Get a notification about appointment”

• Fixating too early on a UI design vision
– “The system bell will ring to notify the user about an

appointment…”
• Bogging down in what users do now (concrete tasks), rather

than why they do it (essential tasks)
– “Save file to disk”
– vs. “Make sure my work is kept”

• Duplicating a bad existing procedure in software
• Failing to capture good aspects of existing procedure

Spring 2008 6.831 User Interface Design and Implementation 20

The requirements mindset can also affect task
analysis. If you’re writing down tasks from the
system’s point of view, like “Notify user about
appointment”, then you’re writing requirements
(what the system should do), not tasks (what the
user’s goals are). Sometimes this is merely
semantics, and you can just write it the other way;
but it may also mean you’re focusing too much on
what the system can do, rather than what the user
wants. Tradeoffs between user goals and
implementation feasibility are inevitable, but you
don’t want them to dominate your thinking at this
early stage of the game.

Task analysis derived from observation may give
too much weight to the way things are currently
done. A task analysis that breaks down the steps of
a current system is concrete. For example, if the
Log In task is broken down into the subtasks Enter
username and Enter password, then this is a
concrete task relevant only to a system that uses
usernames and passwords for user identification. If
we instead generalize the Log In task into subtasks
Identify myself and Prove my identity, then we have
an essential task, which admits much richer design
possibilities when it’s time to translate this task into
a user interface.

A danger of concrete task analysis is that it might
preserve tasks that are inefficient or could be done
a completely different way in software. Suppose
we did a task analysis by observing users
interacting with paper manuals. We’d see a lot of
page flipping: “Find page N” might be an important

subtask. We might naively conclude from this that
an online manual should provide really good
mechanisms for paging & scrolling, and that we
should pour development effort into making those
mechanisms as fast as possible. But page flipping
is an artifact of physical books! It would pay off
much more to have fast and effective searching and
hyperlinking in an online manual. That’s why it’s
important to focus on why users do what they do
(the essential tasks), not just what they do (the
concrete tasks).

An incomplete task analysis may fail to capture
important aspects of the existing procedure. In one
case, a dentist’s office converted from manual
billing to an automated system. But the office
assistants didn’t like the new system, because they
were accustomed to keeping important notes on the
paper forms, like “this patient’s insurance takes
longer than normal.” The automated system
provided no way to capture those kinds of
annotations. That’s why interviewing and
observing real users is still important, even though
you’re observing a concrete task process.

Hints for Better User & Task Analysis

• Questions to ask
– Why do you do this? (goal)
– How do you do it? (subtasks)

• Look for weaknesses in current situation
– Goal failures, wasted time, user irritation

• Contextual inquiry
• Participatory design

Spring 2008 6.831 User Interface Design and Implementation 21

When you’re interviewing users, they tend to focus
on the what: “first I do this, then I do this…” Be
sure to probe for the why and how as well, to make
your analysis more abstract and at the same time
more detailed.

Since you want to improve the current situation,
look for its weaknesses and problems. What tasks
often fail? What unimportant tasks are wasting lots
of time? It helps to ask the users what annoys them
and what suggestions they have for improvement.

There are two other techniques for making user and
task analysis more effective: contextual inquiry and
participatory design, described in more detail on
the next slides.

Contextual Inquiry

• Observe users doing real work in the real
work environment

• Be concrete
• Establish a master-apprentice relationship

– User shows how and talks about it
– Interviewer watches and asks questions

• Challenge assumptions and probe surprises

Spring 2008 6.831 User Interface Design and Implementation 22

Contextual inquiry is a technique that combines
interviewing and observation, in the user’s actual
work environment, discussing actual work
products. Contextual inquiry fosters strong
collaboration between the designers and the users.
(Wixon, Holtzblatt & Knox, “Contextual design: an
emergent view of system design”, CHI ’90)

Participatory Design

• Include representative users directly in the
design team

• OMS design team included an Olympic
athlete as a consultant

Spring 2008 6.831 User Interface Design and Implementation 23

Participatory design includes users directly on the
design team – participating in the task analysis,
proposing design ideas, helping with evaluation.
This is particularly vital when the target users have
much deeper domain knowledge than the design
team. It would be unwise to build an interface for
stock trading without an expert in stock trading on
the team, for example.

Summary

• User analysis identifies the user classes
• Task analysis discovers their tasks
• Domain analysis finds the entities and

relationships in the domain

Spring 2008 6.831 User Interface Design and Implementation 24

