
Spring 2008 6.831 User Interface Design and Implementation 1

Lecture 4: Learnability

To print these slides, use the PDF version.

UI Hall of Fame or Shame?

Spring 2008 6.831 User Interface Design and Implementation 2

Source: Interface Hall of Shame

IBM’s RealCD is CD player software, which
allows you to play an audio CD in your CD-ROM
drive.

Why is it called “Real”? Because its designers
based it on a real-world object: a plastic CD case.
This interface has a metaphor, an analogue in the
real world. Metaphors are one way to make an
interface more learnable, since users can make
guesses about how it will work based on what they
already know about the interface’s metaphor.
Unfortunately, the designers’ careful adherence to
this metaphor produced some remarkable effects,
none of them good.

Here’s how RealCD looks when it first starts up.
Notice that the UI is dominated by artwork, just
like the outside of a CD case is dominated by the
cover art. That big RealCD logo is just that – static
artwork. Clicking on it does nothing.

There’s an obvious problem with the choice of
metaphor, of course: a CD case doesn’t actually
play CDs. The designers had to find a place for the
player controls – which, remember, serve the
primary task of the interface – so they arrayed them
vertically along the case hinge. The metaphor is
dictating control layout, against all other
considerations.

Slavish adherence to the metaphor also drove the
designers to disregard all consistency with other
desktop applications. Where is this window’s close
box? How do I shut it down? You might be able to
guess, but is it obvious? Learnability comes from

more than just metaphor.

UI Hall of Shame!

Spring 2008 6.831 User Interface Design and Implementation 3

Source: Interface Hall of Shame

But it gets worse. It turns out, like a CD case, this
interface can also be opened. Oddly, the designers
failed to sensibly implement their metaphor here.
Clicking on the cover art would be a perfectly
sensible way to open the case, and not hard to
discover once you get frustrated and start clicking
everywhere. Instead, it turns out the only way to
open the case is by a toggle button control (the
button with two little gray squares on it).

Opening the case reveals some important controls,
including the list of tracks on the CD, a volume
control, and buttons for random or looping play.
Evidently the metaphor dictated that the track list
belongs on the “back” of the case. But why is the
cover art more important than these controls? A
task analysis would clearly show that adjusting the
volume or picking a particular track matters more
than viewing the cover art.

And again, the designers ignore consistency with
other desktop applications. It turns out that not all
the tracks on the CD are visible in the list. Could
you tell right away? Where is its scrollbar?

UI Hall of Shame

Spring 2008 6.831 User Interface Design and Implementation 4

mouse over
Source: Interface Hall of Shame

We’re not done yet. Where is the online help for
this interface?

First, the CD case must be open. You had to figure
out how to do that yourself, without help.

With the case open, if you move the mouse over the
lower right corner of the cover art, around the IBM
logo, you’ll see some feedback. The corner of the
page will seem to peel back. Clicking on that
corner will open the Help Browser.

The aspect of the metaphor in play here is the liner
notes included in a CD case. Removing the liner
notes booklet from a physical CD case is indeed a
fiddly operation, and alas, the designers of RealCD
have managed to replicate that part of the
experience pretty accurately. But in a physical CD
case, the liner notes usually contain lyrics or credits
or goofy pictures of the band, which aren’t at all
important to the primary task of playing the music.
RealCD puts the instructions in this invisible,
nearly unreachable, and probably undiscoverable
booklet.

This example has several lessons: first, that
interface metaphors can be horribly misused; and
second, that the presence of a metaphor does not at
all guarantee an “intuitive”, or easy-to-learn, user
interface. (There’s a third lesson too, unrelated to
metaphor – that beautiful graphic design doesn’t
equal usability, and that graphic designers can be
just as blind to usability problems as programmers
can.)

Fortunately, metaphor is not the only way to
achieve learnability. In fact, it’s probably the
hardest way, fraught with the most pitfalls for the
designer. In this lecture, we’ll look at some other
ways.

Today’s Topics

• User model vs. system model
• Interaction styles
• Learnability principles & design patterns

– Affordances
– Natural mapping
– Consistency
– Speak the user’s language
– Metaphors

Spring 2008 6.831 User Interface Design and Implementation 5

Today’s lecture is about learnability and
memorability – making interfaces easier for new
users to learn, and for casual users to remember.

We’ll talk about how users learn about an interface
by forming a mental model of its parts and their
behaviors. We’ll look at the evolution of graphical
user interfaces from a learnability point of view,
surveying three interface styles that have been
(and still are) used. We’ll also talk about some
design principles that you can apply if learnability
is an important criterion for your interface.

Models

• Model of a system = how it works
– its constituent parts and how they work together to

do what the system does
• Implementation models

– Pixel editing vs. structured graphics
– Text file as single string vs. list of lines

• Interface models
– RealCD’s online help as liner notes

Spring 2008 6.831 User Interface Design and Implementation 6

A model of a system is a way of describing how
the system works. A model specifies what the parts
of the system are, and how those parts interact to
make the system do what it’s supposed to do.

Consider image editing software. Programs like
Photoshop and Gimp use a pixel editing model, in
which an image is represented by an array of pixels
(plus a stack of layers). Programs like Visio and
Illustrator, on the other hand, use a structured
graphics model, in which an image is represented
by a collection of graphical objects, like lines,
rectangles, circles, and text. In this case, the choice
of model strongly constrains the kinds of operations
available to a user. You can easily tweak
individual pixels in Photoshop, but you can’t easily
move an object once you’ve drawn it into the
picture.

Similarly, most modern text editors model a text
file as a single string, in which line endings are just
like other characters. But it doesn’t have to be this
way. Some editors represent a text file as a list of
lines instead. When this implementation model is
exposed in the user interface, as in old Unix text
editors like ed, line endings can’t be deleted in the
same way as other characters. ed has a special join
command for deleting line endings.

Models in UI Design

• Three models are relevant to UI design:

Spring 2008 6.831 User Interface Design and Implementation 7

User
model

Interface
model

System
model

The preceding discussion hinted that there are
actually several models you have to worry about in
UI design:

•The system model (sometimes called
implementation model) is how the system actually
works.

•The interface model (or manifest model) is the
model that the system presents to the user through
its user interface.

•The user model (or conceptual model) is how the
user thinks the system works.

Note that we’re using model in a more general and
abstract sense here than when we talk about the
model-view-controller pattern. In MVC, the model
is a software component (like a class or group of
classes) that stores application data and implements
the application behavior behind an interface. Here,
a model is an abstracted description of how a
system works. The system model on this slide
might describe the way an MVC model class
behaves (for example, storing text as a list of lines).
The interface model might describe the way an
MVC view class presents that system model (e.g.,
allowing end-of-lines to be “deleted” just as if they
were characters). Finally, the user model isn’t
software at all; it’s all in the user’s mind.

Interface Model Hides System Model

• Interface model should be:
– Simple
– Appropriate: reflect user’s model of the task
– Well-communicated

Spring 2008 6.831 User Interface Design and Implementation 8

The interface model might be quite different from
the system model. A text editor whose system
model is a list of lines doesn’t have to present it
that way through its interface. The interface could
allow deleting line endings as if they were
characters, even though the actual effect on the
system model is quite different.

Similarly, a cell phone presents the same simple
interface model as a conventional wired phone,
even though its system model is quite a bit more
complex. A cell phone conversation may be
handed off from one cell tower to another as the
user moves around. This detail of the system model
is hidden from the user.

As a software engineer, you should be quite
familiar with this notion. A module interface offers

a certain model of operation to clients of the
module, but its implementation may be
significantly different. In software engineering,
this divergence between interface and
implementation is valued as a way to manage
complexity and plan for change. In user interface
design, we value it primarily for other reasons: the
interface model should be simpler and more closely
reflect the user’s model of the actual task, which
we can learn from task analysis.

User Model May Be Wrong

• Sometimes harmless
– Electricity as water

• Sometimes misleading
– Thermostat as a valve

Spring 2008 6.831 User Interface Design and Implementation 9

The user’s model may be totally wrong without
affecting the user’s ability to use the system. A
popular misconception about electricity holds that
plugging in a power cable is like plugging in a
water hose, with electrons traveling up through the
cable into the appliance. The actual system model
of household AC current is of course completely
different: the current changes direction many times
a second, and the actual electrons don’t move
much. But the user model is simple, and the
interface model supports it: plug in this tube, and
power flows to the appliance.

But a wrong user model can lead to problems, as
well. Consider a household thermostat, which
controls the temperature of a room. If the room is
too cold, what’s the fastest way to bring it up to the
desired temperature? Some people would say the
room will heat faster if the thermostat is turned all
the way up to maximum temperature. This
response is triggered by an incorrect mental model
about how a thermostat works: either the timer
model, in which the thermostat controls the duty
cycle of the furnace, i.e. what fraction of time the
furnace is running and what fraction it is off; or the
valve model, in which the thermostat affects the
amount of heat coming from the furnace. In fact, a
thermostat is just an on-off switch at the set
temperature. When the room is colder than the set
temperature, the furnace runs full blast until the
room warms up. A higher thermostat setting will
not make the room warm up any faster. (Norman,
Design of Everyday Things, 1988)

These incorrect models shouldn’t simply be

dismissed as “ignorant users.” (Remember, the
user is always right! If there’s a consistent problem
in the interface, it’s probably the interface’s fault.)
These user models for heating are perfectly correct
for other systems: the heater in a car, for example,
or a burner on a stove both use the valve model.
And users have no problem understanding the
model of a dimmer switch, which performs the
analogous function for light that a thermostat does
for heat. When a room needs to be brighter, the
user model says to set the dimmer switch right at
the desired brightness.

The problem here is that the thermostat isn’t
effectively communicating its model to the user. In
particular, there isn’t enough feedback about what
the furnace is doing for the user to form the right
model.

Interaction Styles

• Command language
• Menus & forms
• Direct manipulation

Spring 2008 6.831 User Interface Design and Implementation 10

Today’s lecture is about learnability, which was
one of the major goals in the evolution of graphical
user interfaces over the last few decades.

Let’s look at three major kinds of user interface
styles for desktop computing (i.e., a computer with
a screen, keyboard, and mouse) that have been
used. We’ll tackle them in roughly chronological
order as they were developed. In general, the
progression of these styles has been towards greater
and greater learnability, and we’ll see why.

Command Language

• User types in commands in an artificial
language

Spring 2008 6.831 User Interface Design and Implementation 11

ls -l *.java

+6.831 site:mit.edu
Unix shell

search engine query

URL
http://www.mit.edu/admissions/

The earliest computer interfaces were command
languages: job control languages for early
computers, which later evolved into the Unix
command line.

Although a command language is rarely the first
choice of a user interface designer nowadays, they
still have their place – often as an advanced feature
embedded inside another interaction style. For
example, Google’s query operators form a
command language. Even the URL in a web
browser is a command language, with particular
syntax and semantics.

Menus and Forms

• User is prompted to choose from menus and
fill in forms

Spring 2008 6.831 User Interface Design and Implementation 12

A menu/form interface presents a series of menus
or forms to the user. Traditional (Web 1.0) web
sites behave this way. Most graphical user
interfaces have some kind of menu/forms
interaction, such as a menubar (which is essentially
a tree of menus) and dialog boxes (which are
essentially forms).

Direct Manipulation

• User interacts with visual representation of data
objects
– Continuous visual representation
– Physical actions or labeled button presses
– Rapid, incremental, reversible, immediately visible effects

Spring 2008 6.831 User Interface Design and Implementation 13

Files & folders on desktop

Scrollbar

Selection handles

Finally, we have direct manipulation: the
preeminent interface style for graphical user
interfaces. Direct manipulation is defined by three
principles [Shneiderman, Designing the User
Interface, 2004]:

1. A continuous visual representation of the
system’s data objects. Examples of this visual
representation include: icons representing files and
folders on your desktop; graphical objects in a
drawing editor; text in a word processor; email
messages in your inbox. The representation may be
verbal (words) or iconic (pictures), but it’s
continuously displayed, not displayed on demand.
Contrast that with the behavior of ed, a command-
language-style text editor: ed only displayed the
text file you were editing when you gave it an

explicit command to do so.

2. The user interacts with the visual representation
using physical actions or labeled button presses.
Physical actions might include clicking on an
object to select it, dragging it to move it, or
dragging a selection handle to resize it. Physical
actions are the most direct kind of actions in direct
manipulation – you’re interacting with the virtual
objects in a way that feels like you’re pushing them
around directly. But not every interface function
can be easily mapped to a physical action (e.g.,
converting text to boldface), so we also allow for
“command” actions triggered by pressing a button
– but the button should be visually rendered in the
interface, so that pressing it is analogous to
pressing a physical button.

3. The effects of actions should be rapid (visible as
quickly as possible), incremental (you can drag the
scrollbar thumb a little or a lot, and you see each
incremental change), reversible (you can undo
your operation – with physical actions this is
usually as easy as moving your hand back to the
original place, but with labeled buttons you
typically need an Undo command), and
immediately visible.

Why is direct manipulation so powerful? It
exploits perceptual and motor skills of the human
machine – and depends less on linguistic skills than
command or menu/form interfaces. So it’s more
“natural” in a sense, because we learned how to
manipulate the physical world long before we
learned how to talk, read, and write.

Comparison of Interaction Styles

• Knowledge in the head vs. world
• Error messages
• Efficiency
• User experience
• Synchrony
• Programming difficulty
• Accessibility

Spring 2008 6.831 User Interface Design and Implementation 14

Let’s compare and contrast the three styles:
command language (CL), menus and forms (MF),
and direct manipulation (DM).

Learnability: knowledge in the head vs.
knowledge in the world. CL requires significant
learning. Users must put a lot of knowledge into
their heads in order to use the language, by reading,
training, practice, etc. (Or else compensate by
having manuals, reference cards, or online help
close at hand while using the system.) The MF
style puts much more information into the world,
i.e. into the interface itself. Well-designed DM also
has information in the world, delivered by the
affordances, feedback, and constraints of the visual

metaphor.

Error messages: CL and MF often have error
messages (e.g. “you didn’t enter a phone number”),
but DM rarely needs error messages. There’s no
error message when you drag a scrollbar too far, for
example; the scrollbar thumb simply stops, and the
visual constraints of the scrollbar make it obvious
why it stopped.

Efficiency: Experts can be very efficient with CL,
since they don’t need to wait for and visually scan
system prompts, and many CL systems have
command histories and scripting facilities that
allow commands to be reused rather than constantly
retyped. Efficient performance with MF interfaces
demands good shortcuts (e.g. keyboard shortcuts,
tabbing between form fields, typeahead). Efficient
performance with DMs is possible when the DM is
appropriate to the task; but using DM for a task it
isn’t well-suited for may feel like manual labor
with a mouse.

User type: CL is generally better for expert users,
who keep their knowledge active and who are
willing to invest in training and learning in
exchange for greater efficiency. MF and DM are
generally better for novices and infrequent users.

Synchrony: Command languages are synchronous
(first the user types a complete command, then the
system does it). So are menu systems and forms;
e.g., you fill out a web form, and then you submit
it. DM, on the other hand, is asynchronous: the
user can point the mouse anywhere and do anything
at any time. DM interfaces are necessarily event-
driven.

Programming difficulty: CL interfaces are
relatively easy to implement: just parsing text with
rigid syntax requirements. MF interfaces have
substantial toolkit support; e.g., it’s easy to create
an MF web site using plain vanilla HTML, or an
MF Java program using nothing but Java Swing
widgets like textboxes, buttons, and checkboxes.
DM is hardest to program: you have to draw, you
have to handle low-level keyboard and mouse
input, and you have to display feedback.
Relatiavely few off-the-shelf components are
available to help. You won’t find a “selection
handles” widget or a “rubber-band selection
rectangle” included with Swing, for example; you

have to build them yourself.

Accessibility: CL and MF interfaces are more
textual, so they are easier for vision-impaired users
to read with screen readers. DM interfaces are
much harder for these users.

Learnability Principles

• Cues that communicate the system model
– Affordances
– Natural mapping
– Visibility
– Feedback

• Consistency
– Internal, external, metaphorical
– Speak the user’s language
– Metaphors
– Platform standards

Spring 2008 6.831 User Interface Design and Implementation 15

Now we turn to some practical design advice for
increasing learnability.

The first set of principles come from Don
Norman’s book The Design of Everyday Things.
He identified a number of cues that we use in our
interaction with physical objects, like doors and
scissors, to figure out a mental model of how they
work. Since a direct manipulation interface is
intended to be a visual metaphor for physical
interaction, we’ll look at some of these cues and
how they apply to computer interfaces.

The second set of principles fall under the general
umbrella of consistency: interfaces are easier to
learn if they’re already familiar, and if they have
fewer special cases, exceptions, or internal
contradictions.

Affordances

• Perceived and actual properties of a thing
that determine how the thing could be used

• Perceived vs. actual

Spring 2008 6.831 User Interface Design and Implementation 16

According to Norman, affordance refers to “the
perceived and actual properties of a thing”,
primarily the properties that determine how the
thing could be operated. Chairs have properties that
make them suitable for sitting; doorknobs are the
right size and shape for a hand to grasp and turn. A
button’s properties say “push me with your finger.”
Scrollbars say that they continuously scroll or pan
something that you can’t entirely see. Affordances
are how an interface communicates nonverbally
with the user, telling them how to operate it.

Affordances are rarely innate – they are learned
from experience. We recognize properties suitable
for sitting on the basis of our long experience with
chairs. We recognize that listboxes allow you to
make a selection because we’ve seen and used
many listboxes, and that’s what they do.

Note that perceived affordance is not the same as
actual affordance. A facsimile of a chair made of
papier-mache has a perceived affordance for sitting,
but it doesn’t actually afford sitting: it collapses
under your weight. Conversely, a fire hydrant has
no perceived affordance for sitting, since it lacks a
flat, human-width horizontal surface, but it actually
does afford sitting, albeit uncomfortably.

Recall the textbox from our first lecture, whose
perceived affordance (type a time here) disagrees
with what it can actually do (you can’t type, you
have to push the Set Time button to change it). Or
the door handle on the right, whose nonverbal
message (perceived affordance) clearly says “pull
me” but whose label says “push” (which is
presumably what it actually affords). The parts of a
user interface should agree in perceived and actual
affordances.

Natural Mapping

• Physical arrangement of controls should
match arrangement of function

• Best mapping is direct, but natural mappings
don’t have to be direct
– Light switches
– Stove burners
– Turn signals
– Audio mixer

Spring 2008 6.831 User Interface Design and Implementation 17

Another important principle of interface
communication is natural mapping of functions to
controls.

Consider the spatial arrangement of a light switch
panel. How does each switch correspond to the
light it controls? If the switches are arranged in the
same fashion as the lights themselves, it is much
easier to learn which switch controls which light.

Direct mappings are not always easy to achieve,
since a control may be oriented differently from the
function it controls. Light switches are mounted
vertically, on a wall; the lights themselves are
mounted horizontally, on a ceiling. So the switch
arrangement may not correspond directly to a light
arrangement.

Other good examples of mapping include:

•Stove burners. Many stoves have four burners
arranged in a square, and four control knobs
arranged in a row. Which knobs control which
burners? Most stoves don’t make any attempt to
provide a natural mapping.

•Car turn signals. The turn signal switch in most
cars is a stalk that moves up and down, but the
function it controls is a signal for left or right turn.
So the mapping is not direct, but it is nevertheless
natural. Why?

•An audio mixer for DJs (proposed by Max Van
Kleek for the Hall of Fame) has two sets of
identical controls, one for each turntable being
mixed. The mixer is designed to sit in between the
turntables, so that the left controls affect the
turntable to the left of the mixer, and the right
controls affect the turntable to the right. The
mapping here is direct.

The controls on the RealCD interface don’t have a
natural mapping. Why not?

Visibility

• Relevant parts of system should be visible
– Not usually a problem in the real world
– But takes extra effort in computer interfaces

• Availability of drag & drop is often invisible

Spring 2008 6.831 User Interface Design and Implementation 18

mouse over

Visibility is an essential principle – probably the
most important – in communicating a model to the
user.

If the user can’t see an important control, they
would have to (1) guess that it exists, and (2) guess
where it is. Recall that this was exactly the
problem with RealCD’s online help facility. There
was no visible clue that the help system existed in
the first place, and no perceivable affordance for
getting into it.

Visibility is not usually a problem with physical
objects, because you can usually tell its parts just
by looking at it. Look at a bicycle, or a pair of
scissors, and you can readily identify the pieces that
make it work. Although parts of physical objects
can be made hidden or invisible – for example, a
door with no obvious latch or handle – in most
cases it takes more design work to hide the parts
than just to leave them visible.

The opposite is true in computer interfaces. A
window can interpret mouse clicks anywhere in its
boundaries in arbitrary ways. The input need not
be related at all to what is being displayed. In fact,
it takes more effort to make the parts of a computer
interface visible than to leave them invisible. So
you have to guard carefully against invisibility of
parts in computer interfaces.

Interestingly, lack of visibility is responsible for a
common learnability flaw in direct manipulation
interfaces that use drag & drop. Drag & drop is
an incredibly powerful direct manipulation
technique, but it has so little visibility that many
users simply don’t realize when drag & drop is
possible, and when it isn’t. As a result, this
wonderful direct-manipulation technique is often
secondary, a shortcut used only by expert users
who know about it, while some less usable (often
menu & form style) interface is used by the bulk of
novice and casual users. A quick poll for Firefox
users:

Who knew that you can drag the website’s icon out
of the address bar to make a bookmark?

Who knew that you can rearrange tabs by dragging
them around?

Who knew that you can rearrange bookmarks on

the Bookmarks menu?

We’ll have much more to say about visibility in a
future lecture.

Feedback

• Actions should have immediate, visible
effects
– Push buttons
– Scrollbars
– Drag & drop

• Kinds of feedback
– Visual
– Audio
– Haptic

Spring 2008 6.831 User Interface Design and Implementation 19

The final principle of interface communication is
feedback: what the system does when you perform
an action. When the user successfully makes a part
work, it should appear to respond. Push buttons
depress and release. Scrollbar thumbs move.
Dragged objects follow the cursor.

Feedback doesn’t always have to be visual. Audio
feedback – like the clicks that a keyboard makes –
is another form. So is haptic feedback, conveyed
by the sense of touch. The mouse button gives you
haptic feedback in your finger when you feel the
vibration of the click. That’s much better feedback
then you get from a touchscreen, which doesn’t
give you any physical sense when you’ve pressed it
hard enough to register.

Consistency

• Also called the “principle of least surprise”
– Similar things should look and act similar
– Different things should look different

• Kinds of consistency
– Internal
– External
– Metaphorical

Spring 2008 6.831 User Interface Design and Implementation 20

Affordances and natural mapping are examples of a
general principle of learnability: consistency. This
rule is often given the hifalutin’ name the Principle
of Least Surprise, which basically means that you
shouldn’t surprise the user with the way a
command or interface object works. Similar things
should look, and act, in similar ways. Conversely,
different things should be visibly different.

There are three kinds of consistency you need to
worry about: internal consistency within your
application; external consistency with other
applications on the same platform; and
metaphorical consistency with your interface
metaphor or similar real-world objects.

The RealCD interface has problems with both

metaphorical consistency (CD jewel cases don’t
play; you don’t open them by pressing a button on
the spine; and they don’t open as shown), and with
external consistency (the player controls aren’t
arranged horizontally as they’re usually seen; and
the track list doesn’t use the same scrollbar that
other applications do).

Consistency of Layout

Spring 2008 6.831 User Interface Design and Implementation 21

One important area of consistency is in layout –
where controls and information are displayed on
the screen. This is the reason that menubars appear
at the top of the screen (or window). The GIMP
definitely reduced its learnability by putting all its
menus in a right-click menu, because this design is
externally inconsistent.

The dialog boxes on the right are three different
layouts used in Visual Basic’s dialog boxes,
showing a lack of internal consistency.

Preserving consistency of layout over time is also
important. The multi-row tab widget on the bottom
sacrifies consistency of layout in favor of
consistency with the tabbed-notebook metaphor,
and it’s not a good tradeoff.

Consistency in Wording

Spring 2008 6.831 User Interface Design and Implementation 22

Another important kind of consistency, often
overlooked, is in wording. Use the same terms
throughout your user interface. If your interface
says “share price” in one place, “stock price” in
another, and “stock quote” in a third, users will
wonder whether these are three different things
you’re talking about. Don’t get creative when
you’re writing text for a user interface; keep it
simple and uniform, just like all technical writing.

Here are some examples from the Course VI
Underground Guide web site – confusion about
what’s a “review” and what’s an “evaluation”.

Speak the User’s Language

• Use common words, not techie jargon
– But use domain-specific terms where appropriate

• Allow aliases/synonyms in command languages

Spring 2008 6.831 User Interface Design and Implementation 23

Source: Interface Hall of Shame

External consistency in wording is important too
– in other words, speak the user’s language as
much as possible, rather than forcing them to learn
a new one. If the user speaks English, then the
interface should also speak English, not Geekish.
Technical jargon should be avoided. Use of jargon
reflects aspects of the system model creeping up
into the interface model, unnecessarily. How might
a user interpret the dialog box shown here? One
poor user actually read type as a verb, and dutifully
typed M-I-S-M-A-T-C-H every time this dialog
appeared. The user’s reaction makes perfect sense
when you remember that most computer users do
just that, type, all day. But most programmers
wouldn’t even think of reading the message that
way. Yet another example showing that you are
not the user.

Technical jargon should only be used when it is
specific to the application domain and the expected
users are domain experts. An interface designed for
doctors shouldn’t dumb down medical terms.

When designing an interface that requires the user
to type in commands or search keywords, support
as many aliases or synonyms as you can. Different
users rarely agree on the same name for an object
or command. One study found that the probability
that two users would mention the same name was
only 7-18%. (Furnas et al, “The vocabulary
problem in human-system communication,” CACM
v30 n11, Nov. 1987).

Incidentally, we’ve only looked at two heuristics,

but already we have a contradiction! Speaking the
User’s Language argues for synonyms and aliases,
so a command language should include not only
delete but erase and remove too. But Consistency
in Wording argued for only one name for each
command, or else users will wonder whether these
are three different commands that do different
things. One way around the impasse is to look at
the context in which you’re applying the heuristic.
When the user is talking, the interface should make
a maximum effort to understand the user, allowing
synonyms and aliases. When the interface is
speaking, it should be consistent, always using the
same name to describe the same command or
object. What if the interface is smart enough to
adapt to the user – should it then favor matching its
output to the user’s vocabulary (and possibly the
user’s inconsistency) rather than enforcing its own
consistency? Perhaps, but adaptive interfaces are
still an active area of research, and not much is
known.

Follow Platform Standards

• Follow platform standards
– Apple Human Interface Guidelines
– Windows Vista User Experience Guidelines
– GNOME Human Interface Guidelines
– KDE User Interface Guidelines
– Java Look & Feel Design Guidelines

• Or imitate what the popular programs do

Spring 2008 6.831 User Interface Design and Implementation 24

External consistency also comes from following
platform standards, which many platforms have
codified into a rulebook. (All the guidelines listed
here are online; find them with your favorite search
engine.)

The guidelines in these books tend to be very
specific, e.g. the Windows rulebook says that you
should have a File menu, and there should be a
command called Exit on it (not Quit, not Leave, not
Go Away). Some of these guidelines even get
down to very specific graphic design conventions,
such as the pixel distances between OK and Cancel
buttons on a dialog.

Following platform guidelines ensures consistency
among different applications running on the same
platform, which is valuable for novice and frequent
users alike. However, platform guidelines are
relatively limited in scope, offering solutions for
only a few of the design decisions in a typical UI.

In the absence of a well-defined standard, you can
achieve external consistency by looking at the

popular programs on your platform, and imitating
them where reasonable.

Metaphors

• Advantages
– Highly learnable when appropriate
– Hooks into user’s existing mental

models very easily
• Dangers

– Often hard for designers to find
– May be deceptive
– May be constraining
– Metaphor is usually broken somewhere
– Use of a metaphor doesn’t excuse other bad

design decisions
Spring 2008 6.831 User Interface Design and Implementation 25

Desktop metaphor

Trashcan metaphor

Metaphors are one way you can bring the real
world into your interface. We started out by talking
about RealCD, an example of an interface that uses
a strong metaphor in its interface. A well-chosen,
well-executed metaphor can be quite effective and
appealing, but be aware that metaphors can also
mislead. A computer interface must deviate from
the metaphor at some point -- otherwise, why aren’t
you just using the physical object instead? At those
deviation points, the metaphor may do more harm
than good. For example, it’s easy to say “a word
processor is like a typewriter,” but you shouldn’t
really use it like a typewriter. Pressing Enter every
time the cursor gets close to the right margin, as a
typewriter demands, would wreak havoc with the
word processor’s automatic word-wrapping.

The advantage of metaphor is that you’re
borrowing a conceptual model that the user already
has experience with. A metaphor can convey a lot
of knowledge about the interface model all at once.
It’s a notebook. It’s a CD case. It’s a desktop. It’s a
trashcan. Each of these metaphors carries along
with it a lot of knowledge about the parts, their
purposes, and their interactions, which the user can
draw on to make guesses about how the interface
will work.

Some interface metaphors are famous and largely
successful. The desktop metaphor – documents,
folders, and overlapping paper-like windows on a
desk-like surface – is widely used and copied. The
trashcan, a place for discarding things but also for
digging around and bringing them back, is another
effective metaphor – so much so that Apple

defended its trashcan with a lawsuit, and imitators
are forced to use a different look. (Recycle Bin,
anyone?)

The basic rule for metaphors is: use it if you have
one, but don’t stretch for one if you don’t.
Appropriate metaphors can be very hard to find,
particularly with real-world objects. The designers
of RealCD stretched hard to use their CD-case
metaphor (since in the real world, CD cases don’t
even play CDs), and it didn’t work well.

Metaphors can also be deceptive, leading users to
infer behavior that your interface doesn’t provide.
Sure, it looks like a book, but can I write in the
margin? Can I rip out a page?

Metaphors can also be constraining. Strict
adherence to the desktop metaphor wouldn’t scale,
because documents would always be full-size like
they are in the real world, and folders wouldn’t be
able to have arbitrarily deep nesting.

The biggest problem with metaphorical design is
that your interface is presumably more capable than
the real-world object, so at some point you have to
break the metaphor. Nobody would use a word
processor if really behaved like a typewriter.
Features like automatic word-wrapping break the
typewriter metaphor, by creating a distinction
between hard carriage returns and soft returns.

Most of all, using a metaphor doesn’t save an
interface that does a bad job communicating itself
to the user. Although RealCD’s model was
metaphorical – it opened like a CD case, and it had
a liner notes booklet inside the cover – these
features had such poor visibility and perceived
affordances that they were ineffective.

Case Against Consistency (Grudin)

• Inconsistency is appropriate when context
and task demand it
– Arrow keys

• But if all else is (almost) equal, consistency
wins
– QWERTY vs. Dvorak
– OK/Cancel button order

Spring 2008 6.831 User Interface Design and Implementation 26

Jonathan Grudin (in “The Case Against User
Interface Consistency, CACM v32 n10, Oct 1989)
finesses the issue of consistency still further. His
argument is that consistency should not be treated
as a sacred cow, but rather remain subservient to
the needs of context and task. For example,
although the inverted-T arrow-key arrangement on
modern keyboards is both internally and
metaphorically inconsistent in the placement of the
down arrow, it’s the right choice for efficiency of
use. If two design alternatives are otherwise
equivalent, however, consistency should carry the
day.

Designs that are seriously inconsistent but provide
only a tiny improvement in performance will
probably fail. The Dvorak keyboard, for example,
is slightly faster than the standard QWERTY
keyboard, but not enough to overcome the power of
an entrenched standard.

Summary

• Learnable interfaces should clearly
communicate the correct mental model to the
user
– Use affordances, natural mapping, visibility
– Consider metaphors
– Be consistent internally, externally, metaphorically
– Avoid interfaces that require knowledge in the

head, like command languages

Spring 2008 6.831 User Interface Design and Implementation 27

