
Spring 2008 6.831 User Interface Design and Implementation 1

Lecture 3: UI Software Architecture

UI Hall of Fame or Shame?

Fall 2006 6.831 UI Design and Implementation 2

Suggested by Vikki Chou

Today’s candidate for the Hall of Fame or Shame is
the modal dialog box.

A modal dialog box (like the File Open dialog seen
here) prevents the user from interacting with the
application that popped it up.

Modal dialogs do have some usability advantages,
such as error prevention (the modal dialog is
always on top, so it can’t get lost or be ignored, and
the user can’t accidentally change the selection in
the main window while working on a modal dialog
that affects that selection).

But there are usability disadvantages too, chief
among them loss of user control and reduced
visibility (e.g., you can’t see important information
or previews in the main window, and can’t scroll
the main window to bring something else into
view). Modal dialogs may also overload the user’s
short-term memory – if the user needs some
information from the main window, or worse, from
a second modal dialog, then they’re forced to
remember it, rather than simply viewing and
interacting with both dialogs side-by-side.

When you try to interact with the main window,
Windows gives some nice animated feedback –
flashing the border of the modal dialog box. This
helps explain why your clicks on the main window
had no effect.

On most platforms, you can at least move, resize,
and minimize the main window, even when a
modal dialog is showing. (The modal dialog
minimizes along with it.) Alas, not on Windows…

the main window is completely pinned! You can
minimize it only by obscure means, like the Show
Desktop command, which minimizes all windows.
This is a big obstacle to user control and freedom.

Modeless dialogs, by contrast, don’t prevent using
other windows in the application. They’re often
used for ongoing interactions with the main
window, like Find/Replace. One problem is that a
modeless dialog box can get in the way of viewing
or interacting with the main window (as when a
Find/Replace dialog covers up the match). Another
problem is a consistency problem: modal dialogs
and modeless dialogs usually look identical.
Sometimes the presence of a Minimize button is a
clue that it’s modeless, but that’s not a very strong
visual distinction. A modeless dialog may be better
represented as a sidebar, a temporary pane in the
main window that’s anchored to one side of the
window. Then it can’t obscure the user’s work,
can’t get lost, and is clearly visually different from
a modal dialog box.

UI Hall of Fame or Shame?

Fall 2006 6.831 UI Design and Implementation 3

On Windows, modal dialogs are generally
application-modal – all windows in the application
stop responding until the dialog is dismissed. (The
old days of GUIs also had system-modal dialogs,
which suspended all applications.) Mac OS X has
a neat improvement, window-modal dialogs, which
are displayed as translucent sheets attached to the
titlebar of the blocked window. This tightly
associates the dialog with its window, gives a little
visibility of what’s underneath it in the main
window – and allows you to interact with other
windows, even if they’re from the same
application.

Another advantage of Mac sheets is that they make
a strong contrast with modeless dialogs – the
translucent, anchored modal sheet is easy to
distinguish from a modeless window.

Today’s Topics

• View hierarchy
• Observer pattern
• Model-view-controller pattern

Spring 2008 6.831 User Interface Design and Implementation 4

Today’s lecture is the first in the stream of lectures
about how graphical user interfaces are
implemented. Today we’ll take a high-level look at
the software architecture of GUI software, focusing
on the design patterns that have proven most
useful. Three of the most important patterns are the
model-view-controller abstraction, which has
evolved somewhat since its original formulation in
the early 80’s; the view hierarchy, which is a
central feature in the architecture of every
important GUI toolkit; and the observer pattern,
which is essential to decoupling the model from the
view and controller.

Handling Mouse Input

• Consider an address book application

• A simple implementation:
main() {

paint the window
wait for a mouse click
if (clicked on Add) doAdd();
else if (clicked on Remove) doRemove();
else if (clicked on Edit) doEdit();
... 6.831 User Interface Design and Implementation

Add Remove Edit

Alyssa Hacker ahacker@mit.edu

Ben Bitdiddle benb@mit.edu

Rob Miller rcm@mit.edu

Spring 2008 5

To motivate these patterns, let’s start with a simple
example: how we might handle mouse input to a
simple user interface. This program has a couple of
buttons (Add, Remove, Edit). A simple way to do
it might treat the mouse input as if it were a stream
of commands, and have a simple loop that reads a
mouse click, checks to see which button the click
refers to (which you’d do by comparing the mouse
pointer position against the button’s rectangle), and
then invokes a function.

This is in fact how many old menu-driven
programs were implemented. The program prints a
menu (or just a bare prompt). Then it sits and waits
for you to enter a choice. Then it dispatches on that
choice. At every point in the program, the set of
things you can do (the set of inputs that the
program expects) is hardcoded into the program, so
the system controls the dialog.

Who Controls the Dialog:
the User or the System?

• Suppose the user clicks Edit...

void doEdit() {
change window to show Name and Email textboxes
put cursor in Name textbox
wait for keyboard entry into Name textbox
put cursor in Email textbox
wait for keyboard entry into Email textbox

}

6.831 User Interface Design and Implementation

Name:

Email:

Rob Miller

rcm@mit.edu

Spring 2008 6

Add Remove Edit

That simple approach, in which the system runs
through a hardcoded dialog, doesn’t work for
graphical user interfaces. We don’t want the
system to be in control of the dialog – the user
should have the freedom to decide what they need
to interact with next. I shouldn’t have to wait until
the system asks me to enter something in the Email
textbox; I should be able to interact with anything
that’s visible, at any time. But that wreaks havoc
with a hardcoded dialog design. Not only should
doEdit() be able to handle the Name and Email
textboxes in any order, but it should be able to
handle clicks on the Add and Remove buttons as
well! As interfaces get bigger, hardcoded input
handling simply can’t provide the kind of freedom
we need.

(As we saw in today’s hall of fame & shame, of
course, GUIs do still have modal dialogs in which
the system restricts your choices. But they should
be used sparingly, not for everything!)

Decouple Input Handling

• Key idea: represent the input-handling code as a data
structure

hotspots = ((, doAdd),

(, doRemove),

(, selectName), ...)
– Now the input handling code might look like this:

read mouse click
for each hotspot ∈ hotspots {

if (clicked in hotspot.rectangle) hotspot.handler()
}

6.831 User Interface Design and Implementation

Add

Remove

Rob Miller

Spring 2008 7

Since we can’t hardcode the input handling to a
particular point in the program, we represent the set
of possible inputs with a data structure instead.
Here’s the simplest data structure we might
imagine: a list of hotspots on the screen where a
mouse click causes the program to do something.
Some primitive UI toolkits do use this approach;
the HTML imagemap element is a good example.

View Hierarchy

• Hotspot data structure is better represented as a tree
– Each object in the tree is a view
– Each view has a bounding box representing the area it occupies
– A child view’s bounding box is nested inside its parent’s bounding

box

6.831 User Interface Design and Implementation

Name:

Email:

Rob Miller

rcm@mit.edu

w: Window

t: Toolbar p: Panel

add:
Button

remove:
Button

edit:
Button

nameLabel:
Label

nameBox:
Textbox

contains contains

containscontains
...

Spring 2008 8

Add Remove Edit

In general, however, it works better to structure the
hotspots as a tree, so that the user interface can be
implemented in a modular way.

This leads to the first important pattern we’ll talk
about today: the view hierarchy. A view is an
object that covers a certain area of the screen,
generally a rectangular area called its bounding
box. The view concept goes by a variety of names
in various UI toolkits. In Java Swing, they’re
JComponents; in HTML, they’re elements; in other
toolkits, they may be called widgets, controls, or
interactors.

Views are arranged into a hierarchy of
containment, in which some views (called
containers in the Java nomenclature) can contain
other views. Typical containers are windows,
panels, and toolbars. The view hierarchy is not just
an arbitrary tree, but is in fact a spatial hierarchy:
child views are nested inside their parent’s
bounding box.

Virtually every GUI system has some kind of view
hierarchy. The view hierarchy is a powerful
structuring idea, which is loaded with a variety of
responsibilities in a typical GUI:

Output. Views are responsible for displaying
themselves, and the view hierarchy directs the
display process.

Input. Views can have input handlers, and the view
hierarchy controls how mouse and keyboard input
is processed.

Layout. The view hierarchy controls how the
views are laid out on the screen, i.e. how their
bounding boxes are assigned.

Input Handling

• Input handlers are associated with views

6.831 User Interface Design and Implementation

w: Window

t: Toolbar

add:
Button

remove:
Button

edit:
Button

contains

contains
doAdd:
Listener

doRemove:
Listener
doEdit:
Listener

listeners

listeners

listeners

Spring 2008 9

To handle mouse input, for example, each view can
act as a hotspot, and we can attach a handler to the
view that is called when the mouse is clicked on it.
Thus the view hierarchy subsumes our simple
hotspot-list data structure.

Handlers are also called listeners, event handlers,
subscribers, and observers.

Event-Based Programming

• Control flow through a graphical user interface
– Top-level loop (event loop) reads all input from mouse and

keyboard
– Listener changes state of the interface (e.g. modifying the view

hierarchy) and returns immediately to the event loop

6.831 User Interface Design and Implementation

w: Window

t: Toolbar

edit:
Button

doEdit:
Listener

p: Panel

nameLbl:
Label

nameBox:
Textbox changedName:

Listener

Spring 2008 10

This idea – structuring a user interface as a output
view hierarchy with input listeners attached to the
views – gives rise to the essential paradigm of GUI
programming, in which everything happens in
response to events.

The top level of a GUI program is an event loop
which is responsible for reading from the mouse
and keyboard. In many GUI toolkits, this loop is
actually invisible, buried inside the toolkit runtime
system; you don’t write it yourself. (Java Swing is
like this; so is HTML and Javascript.)

For each input event, the event loop finds the
appropriate view in the view hierarchy (for
example, by looking at the x,y position of the
mouse when a mouse click occurred) and calls the
listener(s) attached to it. The listeners react by
changing the state of the interface, but then return
immediately to the event loop. For example,
doEdit() (the listener for the Edit button) might
create the Name and Email textboxes and attach
them to the view hierarchy, but it doesn’t wait for
the user to actually enter anything in the textboxes.
Instead, additional listeners are attached to the
textboxes to take care of that later, and the event
loop does the waiting.

This is a simplification of the process – we’ll dig
into how input is actually processed in a future
lecture. But it’s important to understand that there
is no straight-line control flow through an event-
based program, starting from the main() function
and passing through the rest of the program in a
predictable way. Instead, primary control is held
by the event loop, and doled out in little sips to

input event handlers.

Observer Pattern

• GUI input handling is an example of the Observer pattern
• An event source generates a stream of discrete events
• Listeners register interest in events from the source

– Can often register only for specific events – e.g., I only want mouse
events occurring inside rectangle

– Listeners can unsubscribe when they no longer want events
• When an event occurs, event source distributes it to all

interested listeners

6.831 User Interface Design and Implementation

Add

Spring 2008 11

GUI input event handling is an instance of the
Observer pattern (also known as Listener and
Publish-Subscribe). In the Observer pattern, an
event source generates a stream of discrete events,
which correspond to state transitions in the source.
One or more listeners register interest (subscribe) to
the stream of events, providing a function to be
called when a new event occurs. In this case, the
mouse is the event source, and the events are
changes in the state of the mouse: its x,y position or
the state of its buttons (whether they are pressed or
released). Events often include additional
information about the transition (such as the x,y
position of mouse), which might be bundled into an
event object or passed as parameters.

When an event occurs, the event source distributes
it to all subscribed listeners, by calling their
callback functions.

Other Examples of Observer

• Higher-level GUI input events
– A Button sends an action event when it is pressed (whether

by the mouse or by the keyboard)
– A Textbox sends change events when its contents change

• Internet messaging
– Email mailing lists
– IM chatrooms

6.831 User Interface Design and ImplementationSpring 2008 12

Low-level mouse and keyboard handling isn’t the
only way the Observer pattern is used in GUIs.
Many listeners in a view hierarchy may be
watching for higher-level events. For example,
pressing a GUI button triggers a high-level
activation event (sometimes called an action event
or a command event). It’s better to listen for this
high-level event, rather than a mouse click event,
because a button can be triggered by the keyboard
as well as by the mouse. Similarly, a textbox sends
events when its state changes, regardless of what
caused the change.

Observer patterns can be found in higher-level
communication systems too – a mailing list or IM
chatroom is basically a stream of events with a set
of subscribers.

Listening to a Backend Model

• We’ve seen how to separate input and output in GUIs
– Output is represented by the view hierarchy
– Input is handled by listeners attached to views

• Missing piece is the backend of the system
– Backend (aka model) represents the actual data that the

user interface is showing and editing
– Why do we want to separate this from the user interface?

6.831 User Interface Design and ImplementationSpring 2008 13

We’ve seen how GUI programs are structured
around a view hierarchy, and how input events are
handled by attaching listeners to views. This is the
start of a separation of concerns – output handled
by views, and input handled by listeners.

But we’re still missing the application itself – the
backend that actually provides the information to
be displayed, and computes the input that is
handled.

Model-View-Controlller Pattern

Spring 2008 6.831 User Interface Design and Implementation 14

Model

View Controller

Model maintains application state
• implements state-changing behavior
• sends change events to views

Controller handles input
• listens for input events on the view
hierarchy
• calls mutators on model or view

View handles output
• gets data from the model to display it
• listens for model changes and updates
display

get() & set()
methods

get()
methods

change events

input events

get() & set()
methods

The model-view-controller pattern, originally
articulated in the Smalltalk-80 user interface, has
strongly influenced the design of UI software ever
since. In fact, MVC may have single-handedly
inspired the software design pattern movement; it
figures strongly in the introductory chapter of the
seminal “Gang of Four” book (Gamma, Helm,
Johnson, Vlissides, Design Patterns: Elements of
Reusable Software).

MVC’s primary goal is separation of concerns. It
separates the user interface frontend from the
application backend, by putting backend code into
the model and frontend code into the view and
controller. MVC also separates input from output;
the controller is supposed to handle input, and the
view is supposed to handle output.

The model is responsible for maintaining
application-specific data and providing access to
that data. Models are often mutable, and they
provide methods for changing the state safely,
preserving its representation invariants. OK, all
mutable objects do that. But a model must also
notify its clients when there are changes to its data,
so that dependent views can update their displays,
and dependent controllers can respond
appropriately. Models do this notification using the
observer pattern, in which interested views and
controllers register themselves as listeners for
change events generated by the model.

View objects are responsible for output. A view
usually occupies some chunk of the screen, usually
a rectangular area. Basically, the view queries the
model for data and draws the data on the screen. It
listens for changes from the model so that it can
update the screen to reflect those changes.

Finally, the controller handles the input. It receives
keyboard and mouse events, and instructs the
model to change accordingly.

Advantages of Model-View-Controller
• Separation of responsibilities

– Each module is responsible for just one feature
• Model: data
• View: output
• Controller: input

• Decoupling
– View and model are decoupled from each other, so they can

be changed independently
– Model can be reused with other views

• e.g. AddressList view that displays the names, and
AddressCounter view that just displays the number

– Multiple views can simultaneously share the same model
– Views can be reused for other models, as long as the model

implements an interface
• e.g. JList class (the view) and ListModel interface

6.831 User Interface Design and ImplementationSpring 2008 15

In principle, this separation has several benefits.
First, it allows the interface to have multiple views
showing the same application data. For example, a
database field might be shown in a table and in an
editable form at the same time. Second, it allows
views and models to be reused in other
applications. The MVC pattern enables the creation
of user interface toolkits, which are libraries of
reusable interface objects.

Another MVC Example: Textbox

Spring 2008 6.831 User Interface Design and Implementation 16

Document

JTextField KeyListener

Document represents a mutable string of
characters

move cursor

get text

text change
events

keypress events

edit text

JTextField is a Component that can
be added to a view hierarchy

KeyListener is a listener
for
keyboard events

A simple example of the MVC pattern is a text
field widget (this is Swing’s widget). Its model is a
mutable string of characters. The view is an object
that draws the text on the screen (usually with a
rectangle around it to indicate that it’s an editable
text field). The controller is an object that receives
keystrokes typed by the user and inserts them in the
string.

Instances of the MVC pattern appear at many
scales in GUI software. At a higher level, this text
field might be part of a view (like the address book
editor), with a different controller listening to it (for
text-changed events), for a different model (like the
address book). But when you drill down to a lower
level, the text field itself is an instance of MVC.

Model Granularity

• How fine-grained are the observable parts of the
model?
– getText() vs. getPartOfText(start, end)

• How fine-grained are the change descriptions
(events)?
– “The string has changed somehow” vs. “Insertion between

offsets 3 and 5”

• How fine-grained are event registrations (the events
the listener actually sees)?
– “Tell me about every change” vs. “Tell me about changes

between offsets 3 and 5”

Spring 2008 6.831 User Interface Design and Implementation 17

Designing a model’s notifications is not always
trivial, because a model typically has many parts
that might have changed. Even in our simple text
box example, the string model has a number of
characters. A mapping application, like Google
Maps, is worse – the model contains thousands of
streets, but only a few are actually important to the
view if the map has been zoomed in. When a
model notifies its views about a change, how finely
should the change be described? Should it simply
say “something has changed”, or should it say
“these particular parts have changed”? Fine-
grained notifications may save dependent views
from unnecessarily querying state that hasn’t
changed, at the cost of more bookkeeping on the
model’s part to keep track of what changed.

Fine-grained notifications can be taken a step
further by allowing views to make fine-grained
registrations, registering interest only in certain
parts of the model. Then a view displaying a small
portion of a large model would only receive events
for changes in the part it’s interested in.

Controlling the granularity of notification or
registration is crucial to achieving good interactive
view performance on large models, like Google
Maps.

Hard to Separate Controller and View
• Controller often needs output

– View must provide affordances for controller (e.g. scrollbar
thumb)

– View must also provide feedback about controller state
(e.g., depressed button)

• State shared between controller and view: Who
manages the selection?
– Must be displayed by the view (as blinking text cursor or

highlight)
– Must be updated and used by the controller
– Should selection be in model?

• Generally not
• Some views need independent selections (e.g. two windows on

the same document)
• Other views need synchronized selections (e.g. table view &

chart view)

Spring 2008 6.831 User Interface Design and Implementation 18

The MVC pattern has a few problems when you try
to apply it, which boil down to this: you can’t
cleanly separate input and output in a graphical
user interface. Let’s look at a few reasons why.

First, a controller often needs to produce its own
output. The view must display affordances for the
controller, such as selection handles or scrollbar
thumbs. The controller must be aware of the screen
locations of these affordances. When the user starts
manipulating, the view must modify its appearance
to give feedback about the manipulation, e.g.
painting a button as if it were depressed.

Second, some pieces of state in a user interface
don’t have an obvious home in the MVC pattern.
One of those pieces is the selection. Many UI
components have some kind of selection, indicating
the parts of the interface that the user wants to use

or modify. In our text box example, the selection is
either an insertion point or a range of characters.

Which object in the MVC pattern should be
responsible for storing and maintaining the
selection? The view has to display it, e.g. by
highlighting the corresponding characters in the
text box. But the controller has to use it and
modify it. Keystrokes are inserted into the text box
at the location of the selection, and clicking or
dragging the mouse or pressing arrow keys changes
the selection.

Perhaps the selection should be in the model, like
other data that’s displayed by the view and
modified by the controller? Probably not. Unlike
model data, the selection is very transient, and
belongs more to the frontend (which is supposed to
be the domain of the view and the controller) than
to the backend (the model’s concern).
Furthermore, multiple views of the same model
may need independent selections. In Emacs, for
example, you can edit the same file buffer in two
different windows, each of which has a different
cursor.

So we need a place to keep the selection, and
similar bits of data representing the transient state
of the user interface. It isn’t clear where in the
MVC pattern this kind of data should go.

Reality: Tightly Coupled View & Controller

• MVC has largely been superseded by MV (Model-
View)

• A reusable view manages both output and input
– Also called widget or component

• Examples: scrollbar, button, menubar

Spring 2008 6.831 User Interface Design and Implementation 19

In principle, it’s a nice idea to separate input and
output into separate, reusable classes. In reality, it
isn’t always feasible, because input and output are
tightly coupled in graphical user interfaces. As a
result, the MVC pattern has largely been
superseded by what might be called Model-View,
in which the view and controllers are fused together
into a single class, often called a component or a
widget.

Most of the widgets in the Swing library are fused
view/controllers like this; you can’t, for example,
pull out JScrollbar’s controller and reuse it in your
own custom scrollbar. Internally, JScrollbar follows
a model-view-controller architecture, but the view
and controller aren’t independently reusable.

A Different Perspective on MVC

Spring 2008 6.831 User Interface Design and Implementation 20

Model

View

Controller

Model maintains application state
• implements state-changing behavior
• sends change events to controller

Controller mediates between model &
view
• listens for input events on the view and
change events on the model
• calls mutators on model or view

View handles output & low-level input
• sends high-level events to the controller

get() & set()
methods

change events

input events

get() & set()
methods

Partly in response to this difficulty, and also to
provide a better decoupling between the model and
the view, some definitions of the MVC pattern treat
the controller less as an input handler and more as a
mediator between the model and the view.

In this perspective, the view is responsible not only
for output, but also for low-level input handling, so
that it can handle the overlapping responsibilities
like affordances and selections.

But listening to the model is no longer the view’s
responsibility. Instead, the controller listens to both
the model and the view, passing changes back and
forth. The events receiving high-level input events
from the view, like selection-changed, button-
activated, or textbox-changed, rather than low-level
input device events).

Risks of Event-Based Programming

• Spaghetti of event handlers
• Obscured control flow leads to some unexpected

pitfalls...

6.831 User Interface Design and ImplementationSpring 2008 21

Whichever pattern you prefer, it’s very important to
structure your GUI program carefully. Control
flow through an event-based program is not simple.
You can’t follow the control just by studying the
source code, because control flow depends on
listener relationships established at runtime, and
input events happening nondeterministically.
Careful discipline about who listens to what (like
the model-view-controller pattern) is essential for
limiting the complexity of control flow and
understanding how to debug your program.

The hidden control flow leads to some unexpected
pitfalls, which is the last thing we’ll look at in
today’s lecture.

Basic Interaction of Event Passing

6.831 User Interface Design and Implementation

Source Listener

set

changed

addListener
interface Source {

addListener()
removeListener()
get()
set()

}

interface Listener {
changed()

}

Client

Spring 2008 22

First, a bit of notation. This is a sequence
diagram, which is useful for depicting control
flow. Time flows downward. Vertical time lines
represent objects, such as an event source or a
listener. Horizontal arrows show method calls and
returns passing control between objects. Finally,
dark rectangles show when a method is active (i.e.,
on the stack).

Here’s the conventional interaction that occurs in
the observer pattern. A client uses addListener (or
a similar method) registers a listener to receive
notifications from the event source. Then, when
the source changes state (usually due to some other
object calling a mutator method, like a set method),
it fires an event to all its registered listeners by
calling changed on them.

Pitfall #1: Listener Calls Observers

• The listener often calls methods on the source

• Source must establish its rep invariant before giving
up control to any listeners

6.831 User Interface Design and Implementation

get

Source Listener

set

changed

Client

Spring 2008 23

This leads to the first pitfall. The listener often
reacts to the change in the model by pulling more
data from the source using get() calls. For
example, when a textbox gets a change event from
its model, it needs to call getText() to get the new
text and display it. So calls to get() may occur
while set() is still in progress.

Why is this a potential problem? Because the set()
method hasn’t returned yet, it’s possible that the
source data structure is not yet in a consistent state,
causing the get() method to return garbage (or
worse, throw an exception). When the source calls
changed() on its listeners, it is giving up control –
in much the same way that a method gives up
control when it returns to its caller. So the source
has to make sure that it’s consistent --- i.e., that it
has established all of its internal invariants – before
it starts issuing notifications to listeners.

It’s often best to delay firing off events until the
end of the method that caused the modification.
Don’t fire events while you’re in the midst of
making changes to the model’s data structure.

Pitfall #2: Listener Calls Mutators

• The listener might call set() on the source

• Only send events when set() actually causes a
change in the source

6.831 User Interface Design and Implementation

set

Model 1 Listener 1->2

set
changed

Client Model 2 Listener 2->1

set

changed

Spring 2008 24

Another pitfall occurs when an observer responds
to an update message by calling set on the model.
Why would it do that? It might, for instance, be
trying to keep the model within some legal range.
Or two models could be listening to each other in
order to keep their state synchronized. So calls to
set() may occur while set() is still in progress.
Obviously, this could lead to infinite regress if
you’re not careful. A good practice for models to
protect themselves against this regress is to only
send updates if a change actually occurs; if a client
calls set() but it has no actual effect on the model,
then no updates should be sent.

Pitfall #3: Listener Unregisters During Update

Spring 2008 6.831 User Interface Design and Implementation 25

Source Listener

set

changed

removeListener

listener may
unregister itself
in response to
an update

Another potential pitfall is a listener that
unregisters itself with removeListener. For
example, suppose we have a model of stock market
data, and a listener that’s watching for a certain
stock to reach a certain price. Once the stock hits
the target price, the listener does its thing (e.g.,
popping up a window to notify the user, or
executing a trade); but then it’s no longer needed,
so it unregisters itself from the model.

This is a problem if the model is iterating naively
over its collection of listeners, and the collection is
allowed to change in the midst of the iteration. It’s
safer to iterate over a copy of the observer list.
Since one-shot observers are not particularly
common, however, this imposes an extra cost on
every event broadcast. So the ideal solution is to
copy the observer list only when necessary – i.e.,
when a register or unregister occurs in the midst of
event dispatch.

Summary

• View hierarchy
– Primary structuring pattern for GUI programs
– Used for output, input, and layout

• Observer pattern
– Used for low-level mouse and keyboard input handling
– Also high-level input events and model changes
– Beware the pitfalls

• Model-view-controller pattern
– Decouples backend from user interface
– Aims to decouple output from input, but that’s hard to do in

practice
– Controller may become a mediator instead

Spring 2008 6.831 User Interface Design and Implementation 26

