
Spring 2008 6.831 User Interface Design and Implementation 1

Lecture 24: Accessibility

Today’s Topics

• Kinds of impairments
• Assistive technology
• Accessibility guidelines

Spring 2008 6.831 User Interface Design and Implementation 2

Today’s lecture is about accessibility, which
generally means making it possible for users with
impairments to use a graphical user interface.
We’ll talk about the kinds of impairments we’ll be
concerned with; the technology (both software and
hardware) that help users deal with them; and some
guidelines for designing UIs for accessibility.

Diversity of Ability

• Visual impairments
– Color perception
– Acuity (“legal blindness”)
– Total blindness

• Hearing impairments
– Often varies with frequency

• Motor disabilities
– Tremor and spasms
– Muscle weakness and fatigue
– Paralysis

Spring 2008 6.831 User Interface Design and Implementation 3

We’ll focus on physical impairments for this
lecture, specifically problems in vision, hearing, or
motor control, because that’s how “accessibility” is
generally understood. But note that there are other
impairments that are relevant to making a user
interface usable by a wide spectrum of people.
Some have cognitive disabilities, like difficulty
learning or paying attention. Others have difficulty
reading, either because they never learned or
because they read a language different from yours.
(We’ll talk about this last one in the
internationalization lecture coming up.)

We’ve talked about one form of vision
impairment already: color blindness. Even more
common than that, of course, is impaired visual
acuity, i.e. inability to focus clearly. For most
people, visual acuity problems can be corrected
with glasses or contact lenses, but some have

uncorrectably bad vision. Roughly a million
Americans are legally blind (unable to read even
the biggest letter on an eye chart, even with
corrective lenses). Perhaps 10% of them are totally
blind, unable to sense light at all.

Hearing impairments affect the ability to sense
sound intensity, and range in a spectrum from
reduced sensitivity to complete loss. Hearing
impairments often depend on sound frequency; a
person may hear lower frequencies well, but not
high frequencies.

Motor disabilities come in many different forms,
and have many different causes. Sufferers of
cerebral palsy experience uncontrollable tremors
and spasms, making it difficult to make fine motor
movements. Muscular dystrophy and multiple
sclerosis can make muscles weak, and sufferers
may tire easily when doing repeated or large
muscle movements. Neural damage can cause
complete paralysis of limbs.

Impairments Affect Everybody

• Aging
– Reduced visual acuity
– Hearing loss
– Arthritis

• Overexposure
– Noise-induced hearing loss
– RSI

• Situational disabilities
– Driving a car
– Walking down the street
– In a noisy environment

Spring 2008 6.831 User Interface Design and Implementation 4

But physical impairments, or their effects, aren’t
limited to people with congenital diseases or
trauma. Aging causes all three kinds of
impairments. We’ve already discussed some of the
impacts of aging on color vision. Older adults may
also have reduced acuity, reduced hearing, and
reduced mobility (specifically arthritis, which
involves tremors, pain, and fatigue).

Overuse can also cause impairment to younger
people, as if aging prematurely. Most people don’t
blind themselves by staring at the sun, but some
lose their hearing prematurely by working in
extremely loud environments (or listening to
iPods?). Repetitive stress injury (RSI) is a motor
impairment caused by excessive computer use
(among other activities), with symptoms including
pain, numbness, and weakness.

Finally, all of us can experience situational
disabilities: temporary conditions of ourselves or
our environment that effectively cause impairment.
For example, when you’re driving a car, your hands

and eyes are occupied with the driving task, so with
respect to an in-dashboard computer, you’re
experiencing visual and motor impairments.
Similarly, when you’re walking down the street,
your visual abilities are diminished (because you
have to watch where you’re going), and your ability
to do fine motor control is reduced as well (because
every step jars your entire body). In a noisy
environment (say, the deck of an aircraft carrier),
you can’t hear. When the sunlight is glaring on
your laptop screen, you can’t see.

The take-away message from this is that
impairments affect everybody, and vision, hearing,
and motor lie on a spectrum of ability that varies
widely between users and over time. So we should
take them into account when we’re designing.

Universal Design

• Equitable use
• Flexibility in use
• Simple & intuitive
• Perceptible information
• Tolerance for error
• Low physical effort
• Size and space for

approach and use

Spring 2008 6.831 User Interface Design and Implementation 5

Universal design is a school of thought that takes
this fact explicitly to heart, by seeking to design for
all users, across as much of the spectrum of
capability as possible. Contrast this with the
attitude that is implicit in this class, and in most
actual design, where we mainly design for the
typical user, and then (8 weeks into the course?)
discuss how to make it “accessible” to everybody
else. Universal design challenges us to think about
supporting a wide range of capability from the start.

The proponents of Universal Design
(http://www.design.ncsu.edu/cud/) have put forth
seven guiding principles, listed here. Several are
already familiar to us (simplicity, learnability,
visibility, errors), and several are more relevant
mainly to physical design (effort, size, space). But
the first principle is the heart of the universal
design philosophy: equitable use. As much as
possible, all users should have the same interface,
so that groups with differing abilities are not
stigmatized. (If the identical interface isn’t
possible, then provide equivalent interfaces.)

Good universal designs are not dumbed down to
make them universal; you shouldn’t sacrifice
efficiency or flexibility for typical users in order to
enable users with reduced ability. Instead, a good
universal design has features that make the design
better for everyone. Classic examples are kitchen

tools with fat, textured handles (like the vegetable
peeler shown here); not only are they easier for
arthritis sufferers to grip, they’re more comfortable
and less error-prone for typical users too.
Similarly, a sidewalk curb cut not only enables
wheelchair users, but also parents with strollers,
travellers with luggage, and people pushing carts.
Even walkers may find the ramp more convenient
than a step.

It’s not always clear how to find a universal design,
but it’s a goal worth striving toward.

Assistive Technology

• Output
– Screen magnifier
– Screen reader
– Braille display
– Screen flashing on sound

• Pointing
– Eye or head tracker
– Puff-and-sip
– Mouse keys

• Typing
– Onscreen keyboards
– Sticky keys
– Speech recognition

Spring 2008 6.831 User Interface Design and Implementation 6

For using computers, users with physical
impairments use a variety of assistive technology,
some hardware, some software.

Screen magnifier software magnifies part of the
display to make it easier to read, which helps users
who have reduced acuity but are not totally blind.
Screen readers help the totally blind, by reading
the contents of the display aloud as speech. For
totally blind users who know Braille, a screen
reader can be connected to a Braille display, which
lets them read the screen privately (and quietly) and
probably faster as well.

For hearing-impaired users, graphical user
interfaces pose fewer problems, because far less
information is conveyed by auditory cues. System
sounds (like beeps) may be translated into a screen
flash; videos may include closed captioning.

On the input side, there are alternative pointing
devices. Eye gaze or head pose tracking can move
the mouse cursor around the screen without the use
of the hands. Puff-and-sip devices (in which the
user blows or sucks a tube) can be used to click a
button, often in combination with a mouth-driven
joystick. Users with less extreme motor
impairments may use touchpads or trackballs,
which are less tiring than mice because they require
smaller movements. The mouse cursor can also be
moved around by keyboard keys; Windows and
Mac both have this feature built-in.

Note that users of screen readers are not likely to
use a pointing device at all, because they can’t see a

mouse cursor or targets on the screen. So totally
blind users typically use a keyboard exclusively.

For keyboard input by severely motor-impaired
users, a pointing device can be combined with an
onscreen keyboard. Keyboard driver software can
often be adjusted to make it easier to use, e.g.
turning off autorepeat so that keys don’t have to be
released quickly, or making modifier keys (like
Shift and Control) “sticky” so that the user doesn’t
have to hold down multiple keys at once.

Speech recognition offers another way to give both
command and text input without using the hands.

Accessibility Guidelines

• Section 508
• W3C Accessibility Initiative

Spring 2008 6.831 User Interface Design and Implementation 7

Now let’s discuss some specific guidelines for
creating accessible interfaces. Most of these
guidelines are targeted at making your interface
amenable to assistive technology, e.g. helping a
screen reader do a better job of translating the
display into text.

The guidelines that follow are summarized from
two sources. Section 508 is an accessibility
standard for web sites and software created by US
government agencies or government contractors.
Anybody who wants to sell software to the US
government must follow the Section 508 rules,
which cover both desktop software and web sites.
The W3C Accessibility Initiative is a group in the
World Wide Web Consortium that has produced a
list of (voluntary) accessibility guidelines for web
sites.

Section 508 rules:

http://www.section508.gov/index.cfm?FuseAction=
Content&ID=12#Software

W3C guidelines:

http://www.w3.org/TR/WAI-WEBCONTENT/

Support Keyboard Access

• Pointing interactions should have keyboard
alternatives
– Menus should be controllable by the keyboard
– Forms and links should be navigable by keyboard
– Needed by motor-impaired and vision-impaired

Spring 2008 6.831 User Interface Design and Implementation 8

Since some users will be less able or unable to use
a pointing device (e.g. users with screen readers),
an accessible interface should support keyboard
alternatives for all interactions. Menus should be
controllable by the keyboard, either using
accelerators or by allowing navigation around the
menu. Similarly, the user should be able to move
the keyboard focus around a form or activate a link
in a web page by keyboard alone.

Provide Text to Screen Readers

• Screen readers need to automatically
transform the display into spoken language

Spring 2008 6.831 User Interface Design and Implementation 9

image
labels

widget
labels

widget
contents

current
selection

clearly
labeled
links and
buttons

An accessible interface should be amenable to
screen reading. All visual content should have
textual alternatives; i.e., images should have
captions or labels describing or naming their
contents, so that screen reading software can
articulate it.

Widgets, like textboxes and checkboxes, should
have labels associated with them. This association
can’t be merely visual (i.e. “From:” happens to be
next to the textbox), but programmatically available
to the screen reader, so that the screen reader can
ask for the label of that textbox and get “From
address” or something similar back. The interface
that screen readers use to access this information is
called an “accessibility API”; we’ll talk about the
APIs for Java and HTML later in this lecture.

Screen readers also need to find out: the current
value of a textbox or other widget; the widget with
the keyboard focus; and the location of the text
selection in a textbox.

For web pages with hyperlinks, the links should be
clearly labeled with the identity of the target page,
not something vague like “click here”. This is
because users of screen readers don’t necessarily
read the entire display linearly, from start to end.
This would be painfully inefficient. Instead, they
skip through, scanning the page aurally much as
users with normal vision would scan it visually. A
screen reader can be directed to read all the links,
skipping over other text, so the links should be self-
descriptive.

Don’t Rely on Sound Alone

• Flash as well as beep
• Closed captioning for videos

Spring 2008 6.831 User Interface Design and Implementation 10

For the sake of hearing-impaired users, don’t rely
on sound as the only channel by which some bit of
information is delivered. To get the user’s
attention, don’t just beep; briefly flash a window or
the screen as well. Videos should include closed-
captioning information.

User Control Over Colors and Fonts

• Allow user to choose high-contrast colors
• Allow user to enlarge fonts
• Don’t rely on color alone

Spring 2008 6.831 User Interface Design and Implementation 11

Users with impaired vision may prefer to use high-
contrast colors, so allow the user to change the
color scheme if necessary. Similarly, allow the
user to enlarge the font size for easier readability.

We’ve already discussed not relying on color as a
sole indicator for conveying information, because
of color blindness. Use secondary cues too.

Accessibility APIs

• javax.accessibility
– Swing widgets implement Accessible
– getAccessibleContext() returns an object with

labels, descriptions, content, selections for the
widget

– Platform-specific accessibility APIs are similar
• HTML accessibility features

– alt and title attributes
– <label> element
– accesskey attribute
– aural CSS

Spring 2008 6.831 User Interface Design and Implementation 12

Java and HTML both offer built-in ways to make
your interface more accessible.

The Java Accessibility API provides an interface
for screen readers to inspect a Swing interface. All
built-in Swing widgets implement it, so by using
widgets, you get accessibility to screen readers for
free. The API has one method,
getAccessibleContext(), which returns an object
containing information about the widget, such as a
label for it, description, its current value, its current
text selection, etc. Major desktop systems
(Windows, Mac, Gnome, KDE) have their own
equivalents for this API, and Java has a bridge that
allows your Swing interface to be inspected
through the platform-specific API.

In HTML, probably the most well-known
accessibility feature is the alt attribute on images,
which specifies a caption or description of the

image for the sake of a screen reader. Other
elements (like frames) have a title attribute for the
same purpose. Textboxes, checkboxes, and other
form controls can be programmatically labeled by
the <label> element.

For keyboard operation of a web page, HTML
offers the accesskey attribute, which can be added
to links and form controls among other elements.
For example, accesskey=“c” specifies that Alt-C
(or some other browser-specific modifier) should
navigate to or invoke the element. Unfortunately
it’s difficult to avoid conflicts between accesskeys
specified by the web page and shortcuts used by the
browser itself, or by the user’s screen reader.
Needless to say, screen reader users depend heavily
on these shortcuts, and a web page that overrides
them will create serious, painful mode errors.
Some experts deprecate the accesskey attribute,
favoring other forms of keyboard navigation
around a page instead (see Jukka Korpela, “Using
accesskey attribute in HTML forms and links”,
http://www.cs.tut.fi/~jkorpela/forms/accesskey.htm
l; also “Using Accesskeys - Is it worth it?”,
http://www.wats.ca/show.php?contentid=32).

Finally, CSS allows specification of audio styles
for a screen reader, so that volume and pacing and
pitch can be designed by a web page author.

Summary

• Accessibility is a universal problem
• Support alternative input (e.g. keyboards)
• Support alternative output (e.g. screen

readers)

Spring 2008 6.831 User Interface Design and Implementation 13

