
Spring 2008 6.831 User Interface Design and Implementation 1

Lecture 23: Threads & Timers

UI Hall of Fame or Shame?

Spring 2008 6.831 User Interface Design and Implementation 2

Here’s our hall of fame or shame example.
StatCounter is a web site that tracks usage statistics
of your web site, using a hit counter. This is a
sample of its statistics page, which shows you how
many visitors your site had over a certain period of
time.

To help focus discussion, let’s think about:

- color design

- visual variables

- the controls underneath the graph

Today’s Topics

• Long-running tasks
• Threads
• Timers
• Event loop hacks

Spring 2008 6.831 User Interface Design and Implementation 3

Today’s lecture is another in our series about
implementing UIs. We’ll be talking about how to
deal with long-running system tasks – i.e.,
computation or I/O that takes more than a short
time to do, so you can’t simply do it in response to
a user input event. We’ll look at three techniques
for implementing these tasks: threads, timers, and
event loop hacking, and discuss their applicability,
advantages, and disadvantages.

Long-Running Tasks

• Some system tasks run for a long time
– Getting a URL, running a database query,

compiling a program
• Event handlers should return quickly

– Because repainting and input handling is blocked
• But everything in a GUI is triggered by an

event handler
– e.g., pressing the button that starts the task

• So long tasks need to run in the background

Spring 2008 6.831 User Interface Design and Implementation 4

First, some motivation. Why do we need to do
background processing in graphical user interfaces?
Even though computer systems are steadily getting
faster, we’re also asking them to do more. Many
programs need to do operations that may take some
time: retrieving URLs over the network, running
database queries, scanning a filesystem, doing
complex calculations, etc.

But graphical user interfaces are event-driven
programs, which means (generally speaking)
everything is triggered by an input event handler.
For example, in a web browser, clicking a
hyperlink starts loading a new web page. But if the
click handler is written so that it actually retrieves
the web page itself, then the web browser will have
very poor usability. Why? Because its interface
will actually freeze up until the click handler
finishes retrieving the web page and returns to the
event loop. It won’t repaint any damage to the
window, and it won’t respond to any further user
input. Most importantly, even if it displays a Stop
button or a Cancel button for interrupting the
download, the button will be completely
unresponsive while the click handler is running.

So long tasks need to run in the background.
What’s a “long task”? Certainly anything shorter
than the perceptual fusion interval, 100 msec, can
be run directly in an event handler. But tasks
longer than 1-5 sec should be cancellable. If a task
needs to be cancelled, then it has to be run in the
background, allowing the event loop to continue
running so that the user can actually cancel it.

Know Your Task’s Bottleneck

• Input from user
– Most desktop and web UIs spend almost all their

time waiting for the user to do something
• Output to user

– Animation
• CPU/memory

– Compute-bound processing
• I/O

– Network, filesystem, devices

Spring 2008 6.831 User Interface Design and Implementation 5

Before discussing the techniques for background
processing, it’s important to be aware of what kind
of task you’re running. What is its performance
bottleneck – i.e., how does it spend most of its
time?

For most GUIs, the bottleneck is actually user
input. The program spends most of its time sitting
in the event loop, waiting patiently for the user to
do something. When the user does provide some
input, the program’s event handlers fire, compute a
change, and repaint the result. Then the program
sits and waits again. Users are so slow relative to
the computer system that this kind of system
doesn’t need any background processing; it can do
everything in the event loop.

When user output is the bottleneck, the program
spends most of its time drawing on the screen,
because the display is changing independently of
the user’s input. 3D games, video players, and
animation-heavy programs typically face this
problem. We’ll talk more about animation in a
future lecture.

The other two bottlenecks are the most relevant to
today’s lecture. CPU or memory might be a
bottleneck for systems that need to do a lot of local
processing. Searching for the shortest path through
an enormous graph might be a compute-bound task,
for example. I/O might be a bottleneck for tasks
that need to read or write a lot of data from the
network or filesystem, or interact with a device like
a CD burner. For I/O-bound tasks (just like user-
input-bound tasks), the CPU spends most of its
time waiting – e.g., waiting for a remote web server
to respond, or waiting for more bytes to arrive
across the network, or waiting for a disk to seek to
the right track.

Note that many tasks might involve both CPU work
and I/O; what we care about is which one is the
bottleneck. If a task involves a small file from the
local disk and then proceeds to decrypt it using an
expensive decryption algorithm, then overall the
task is CPU-bound. If, on the other hand, the task
involves fetching a large file over a distant network
connection and then unzipping it with a fast
decompressor, then overall the task is probably I/O-
bound.

Goals

• Handle UI input and output constantly
– Respond to input events within 100 msec
– Handle repaints too

• Display task progress
– e.g. progress bar

• Allow task to be canceled
– Cancel button

• Don’t hog the CPU

Spring 2008 6.831 User Interface Design and Implementation 6

Here are the goals we want to satisfy when we
implement handling for long tasks.

First, while the task is running, we want to handle
UI input and output constantly. The event loop
should keep spinning, reading input events from the
event queue, dispatching them to event handlers,
and handling repaint requests to keep the display up
to date. To preserve good response times, we
should make sure input events don’t sit on the
queue unhandled for very long – 100 msec would
be the upper limit on the age of an event before it’s
handled.

Second, if the long task was requested by the user,
or if the user is waiting for its results, then we
should display its progress to the user (or at least
evidence that the task is still alive and kicking). It
should also be possible to cancel the task.

(Note that some long tasks may be housekeeping
tasks, which are supposed to happen invisibly.
Autosave is an example; garbage collection is
another. These tasks don’t need to display their
progress and don’t need to be explicitly cancelable,
assuming that they really are invisible as far as the
user interface is concerned, not modes that inhibit
the user’s actions while they’re running.)

Finally, the task shouldn’t hog the CPU
unnecessarily. Some poor approaches to
background processing cause the CPU to busy-
wait on an I/O-bound task. The cost of busy-
waiting is twofold: CPU resources are wasted that
could have been spent on other processes (like
playing MP3s in the background), and the CPU
uses more power (if it could have been sleeping and
saving your laptop’s battery life).

Threads

• Run long tasks in a background thread
– Event handler starts a new thread and returns

immediately
– Background thread does the work while event-

handling thread continues to handle user I/O

Spring 2008 6.831 User Interface Design and Implementation 7

Our first technique for handling long tasks is
seemingly simple, but fraught with peril for the
unprepared: using another thread. (If you’re not
clear about what threads are and how to use them in
Java, see the Concurrency lesson in the Java
Tutorial,
http://java.sun.com/docs/books/tutorial/essential/co
ncurrency/.)

The event loop runs in an event-handling thread.
When an event handler needs to do a long task, it
creates a new thread, starts it running, and then
returns immediately to the event loop, so that
further UI input and output continues to be handled.
Meanwhile, the newly-created thread does the long
task in the background.

Advantages of Threads

• Easy to write (seemingly)
• Ideal for I/O-bound tasks
• Can use lower-priority thread for CPU-bound

tasks

Spring 2008 6.831 User Interface Design and Implementation 8

Threads are appealing because they’re apparently
simple to write. In theory, the code inside the
thread’s body looks exactly the way it would if you
had written it in the event handler itself (assuming
it were fast enough to run there).

They’re also ideal for I/O-bound tasks, in which the
CPU spends most of its time waiting. Assuming
the I/O code is written properly (using blocking
calls, which we’ll define later in this lecture), the
background thread will simply be suspended while
it’s waiting for I/O, and the CPU can run other
threads instead (or even go to sleep to save power).
Incidentally, the event handling thread of a GUI
spends most of its time suspended, waiting for a
user input event to occur.

Even for CPU-bound tasks, threads are a good idea.
CPU-bound threads don’t wait (they usually
saturate the CPU, in order to finish the task as fast
as possible), but they can be given lower
scheduling priority than the event-handling thread,
so that when an input event does finally arrive, the
event-handling thread can preempt the background
thread and handle the input event immediately. So
input events won’t languish on the queue.

Disadvantages of Threads

• Need to protect shared mutable data against
race conditions and deadlocks
– Using locks (in Java, synchronized keyword)
– This is much much harder than it looks

• Many GUI toolkits are not threadsafe
– Including Java Swing
– You cannot safely touch (read or write) any Swing

object or call any Swing method from anywhere
but an event handling thread

Spring 2008 6.831 User Interface Design and Implementation 9

Unfortunately the apparent simplicity of threads
hides subtle dangers: race conditions and
deadlocks. A race condition happens when two
threads read and write the same shared data
structure, causing inconsistencies and corruption.
Race conditions are solved by adding
synchronization (locks) to the data structure, but
this introduces the risk of deadlock: e.g., two
threads each waiting for each other to release a
lock.

Unfortunately there’s very often a shared mutable
data structure in your GUI: the model. If you use
background threads, you have to make sure your
data structure is threadsafe (able to be accessed
from multiple threads). This is much harder than it
looks. In Java, sprinkling synchronized keywords
around willy-nilly is not a principled or reliable
way to do it.

Another important shared mutable data structure in
your GUI is the view hierarchy. Some toolkits
work hard to make it threadsafe (.Net, AWT), but
many do not. Java Swing is not threadsafe. In
general, you cannot safely call methods on a Swing
object from anywhere but the event-handling
thread. (See
http://java.sun.com/products/jfc/tsc/articles/threads/
threads1.html for an explanation of this decision
from Swing’s designers.)

So if you’re using Swing, your background thread:

- can’t read the model, because of race conditions
with the event-handling thread

- can’t read or write the view hierarchy, because
Swing isn’t threadsafe

- can’t write the model, not only because of race
conditions, but also because those writes might
trigger model-change events, which are usually
handled by views or controllers, which would need
to read or write the view hierarchy.

What to do?

A Simple Approach to Safe Threading

• Don’t share any mutable data between
threads
– So don’t touch the model in the background

• Do all GUI stuff in the event-handling thread
– Use SwingUtilities.invokeLater()

• Bundle up model changes and pass them to
the event-handling thread

Spring 2008 6.831 User Interface Design and Implementation 10

If you want to use threads for background
processing in Swing, it’s best to follow a careful
discipline. Here’s a simple discipline that will be
safe.

First, don’t share any mutable data between
threads. Immutable objects are OK; they can’t
suffer race conditions, because all you can do is
read them. But don’t touch mutable model objects
from the background thread, either for reading or
writing. Any mutable objects that the background
thread uses should be created and used only by that
thread, not shared with any others.

Second, do all your GUI access in the event-
handling thread. When a background thread needs
to make a change to the GUI – e.g., updating its
progress bar – then it should force that code to be
run by the event-handling thread. Single-threaded
toolkits like Swing generally provide some
mechanism for doing this. Swing has a method
SwingUtilities.invokeLater() which takes a
Runnable object and runs it (as soon as possible) in
the event-handling thread. This method actually
works by dropping a pseudoevent on the event
queue, with your Runnable code attached to it as an
event handler, so that when the event loop pops the
pseudoevent off the queue, it runs your code.
When a background thread needs to read data from
GUI objects, you can use
SwingUtilities.invokeAndWait(), which doesn’t
return until the event-handling thread has finished
running the Runnable.

The background thread can use the same techniques
to read and write the model. The essence of this
discipline:

The model and the view hierarchy belong to the
event-handling thread, and should be touched
by no other threads.

Since this kind of communication between threads
can be expensive (switching between threads can
cost 100 times more than a simple procedure call),
you should bundle up changes. For example, if
you’re downloading a file from the Web and
loading it into a textbox, don’t send one character
at a time through invokeLater(). Send it in big
chunks.

Making Your Model Threadsafe

• Synchronize carefully
– Coarse-grained locking is simple and reliable, but

blocks the event-handling thread

– Fine-grained locking may have race conditions or
deadlocks

Spring 2008 6.831 User Interface Design and Implementation 11

class Node {
synchronized void setParent(Node n) {...}
synchronized void setChild(Node n) {...}
synchronized Node getChild(int i) { ... }
...

}

synchronized (model) {
// all code that reads and writes model

}

Unfortunately this simple discipline may be too
constraining. If you can’t read or write your model
in the background thread, then a lot of useful long-
running tasks are ruled out. How would you
implement autosave, for example, if you couldn’t
touch the model? You’d have to make a copy of
the model before starting the background thread.
Making a copy of a large model might be more
expensive than the task itself, and it would have to
happen in the event-handling thread, since that’s
the only thread that’s allowed to touch the model in
the simple discipline we’ve just described. So
putting the task in the background would be
pointless.

So the next level above the simple discipline is
making your model threadsafe, so that at least the
model can be read and written directly from
background threads, even if the view hierarchy
can’t.

The first step is adding synchronization (locks) to
your model objects, so that they’re safe to read and
write from multiple threads. This is harder than it
looks, and it’s beyond the scope of this class to
cover how to do it well. (The most we can really
convey is a sense of peril.) But here’s the essence
of the problem: most model data structures consist
of multiple objects, so when you design your
locking strategy, you need to decide on the
granularity of locking. Fine-grained locking, with
one lock per object, provides the most parallelism
and the least exclusion, but is also most susceptible
to race conditions and deadlocks. Coarse-grained
locking, with one lock for the entire model, is likely
to be too exclusive; it will actually freeze the UI
from updating while the background task is holding
the lock.

For example, suppose the model is a tree. If there’s
only one lock on the tree, and the background
thread is holding it while it’s traversing the tree
making changes (or perhaps just autosaving), then
the event-handling thread will block – freeze – if it
tries to access the model, even just to repaint.
That’s bad. If the background thread prevents the
event-handling thread from running, then we might
as well have run the long task in the event-handling
thread anyway!

But if each node has its own lock, then it’s possible
to have race conditions or deadlocks. For example,

code that removes a node from the tree has to
update two nodes: the node itself (to set its parent
field to null) and its parent (to remove the child
from its list of children). If this code acquires the
locks for the nodes separately, then a race condition
results (i.e., another thread could interrupt after the
first node has been updated but before the second
node has been changed, seeing an inconsistent
tree). If the code acquires and holds the locks for
both nodes while it’s updating both nodes, then it
must acquire them in a consistent order, or
deadlock may result. Actually, deadlock can easily
happen on a tree with individual node locks:
suppose one thread is doing a depth-first search
(which acquires locks from the root downward) and
another thread is searching for the least common
ancestor of two leaves (which acquires locks from
the leaves upward). If those threads ever meet at a
node, they’ll deadlock, waiting for each other to
release the locks they’re holding.

Making Your Model Threadsafe

• Use a database and transactions instead of
locks

• Fire events in the event-handling thread
– Since views and controllers are listening for those

events, and they’re probably Swing objects

Spring 2008 6.831 User Interface Design and Implementation 12

It’s usually far easier to synchronize your model if
it’s stored in a database. If you surround your
updates by transactions to keep them consistent,
then you can achieve thread safety with much less
pain.

However you secure your model, make sure that it
communicates appropriately with the views and
controllers listening to it, which are either Swing
objects themselves or need to call lots of Swing
objects. Make sure that code runs on the event-
handling thread, using invokeLater().

Timers

• Break task into little chunks and run them
periodically with a timer
– Usually used for animation
– Also useful for network I/O, but be careful not to

block
• Timer events happen on event-handling

thread
– So generally no synchronization problems
– But timer handler should return quickly (< 100ms)
– Use javax.swing.Timer, not java.util.Timer
– HTML/Javascript: setTimeout() or setInterval()

Spring 2008 6.831 User Interface Design and Implementation 13

Hopefully we’ve made the point that using threads
in GUI programming isn’t as simple as it looks.
Timers are an alternative technique that uses
nothing but the event-handling thread, so that you
needn’t fear race conditions and deadlocks. A
timer is an object that periodically fires an event
handler. So if a long-running task can be broken up
into small chunks that run in less than 100 msec (in
order to keep the event-handling thread
responsive), then a timer may be a simple solution.

Timers are frequently used for animation, as we’ll
see in a future lecture. They’re also useful for I/O-
bound tasks as long as I/O is buffered (as it is on
every desktop OS), because the operating system
can be filling the buffer while the event loop is
waiting for the timer to fire. Once the timer fires, it
will find data in the buffer ready to process; it
processes it, and then goes back to waiting while
the buffer fills up some more. As long as the buffer
is large enough (or the timer interval is short
enough) that the buffer never fills up and stalls the
I/O transfer, then this scheme will have the same
throughput as a background thread.

But timers tend to slow down CPU-bound tasks.
(Why?)

Since timer events run on the event handling
thread, there are generally no synchronization
problems – as long as, of course, each chunk of the
task makes sure that any data structures it touches
are consistent (i.e., all invariants are satisfied)
before it returns to the event loop.

Be careful of a pitfall here: Java has two different
timer classes, javax.swing.Timer and
java.util.Timer. javax.swing.Timer is the one you
want for this technique, because it will call your
handler on the event-handling thread.
java.util.Timer creates a new thread to call your
handler, so if you use that class, you face all the
problems with threads we just discussed.

Another advantage of timers is that they’re almost
universally supported by GUI toolkits, even on
platforms that don’t support threads at all.
HTML/Javascript has no notion of threads, but it
has timers: setTimeout() runs a function once after
a given time has elapsed, and setInterval() runs a
function repeatedly with a given period.

Listening for Idle Time

• Some toolkits let you register an event
handler for idle time
– Called whenever there are no other events waiting
– Useful for CPU-bound tasks if they can be easily

chopped up into chunks
• Can often by simulated by zero-duration timer

function idler() {
// do idle code
setTimeout(idler, 0)

}

Spring 2008 6.831 User Interface Design and Implementation 14

Another way to run a long task in the event-
handling thread is idle time. Some toolkits let you
register an event handler that gets called when the
event loop is idle, i.e. there are no other events
waiting. Microsoft Foundation Classes (MFC)
calls this the onIdle event.

Idle handling is very useful for running CPU-bound
tasks in the event-handling thread, assuming they
can be easily chopped up into small chunks so that
the event loop periodically gets a chance to handle
input and repaints.

Swing has no idle handling, although it can be
simulated to some extent by using invokeLater() to
drop idle handlers at the end of the event queue.

On HTML/Javascript, idle handling can be
simulated by “zero-duration” timers. Ideally, a
zero-duration timer should fire immediately,
putting the event on the queue immediately, just
like invokeLater() does. Alas, despite the
prevalence of this idiom among Javascript
programmers, current browsers don’t really
implement it that way. They actually create a
timer with the minimum resolution supported by
the OS (typically 10-15 ms). So you pay
something for each zero-duration timer. If you’ve
divided your work into 100 ms chunks, then the
overhead of this technique is an additional 10%.
But, alas, there’s no other way to do it in
HTML/Javascript at the moment.
(http://lazutkin.com/blog/2008/mar/23/javascript-
edp-and-0ms-timeouts/)

I/O Interfaces

• Blocking calls wait until data is available to read (or
buffer has space to write)
– InputStream.read()
– EventQueue.getNextEvent()

• Nonblocking calls return failure immediately
– InputStream.available()
– EventQueue.peekEvent()
– Polling: looping around nonblocking call until it succeeds

• Asynchronous calls notify an event handler when
data is ready
– java.nio package
– XMLHttpRequest in HTML/Javascript

Spring 2008 6.831 User Interface Design and Implementation 15

Let’s return to thinking about I/O, since network
access is such an important part of modern
applications. Programming interfaces for I/O come
in three flavors. Blocking calls wait until data
arrives (for a read) or the outgoing buffer has free
space (for a write). Blocking stalls the whole
thread while waiting for the I/O to happen. Most of
the I/O code you’ve probably written used blocking
calls, because it’s easiest to write.

Nonblocking calls return immediately whether the
read/write can be done or not. If data is available, a
nonblocking read returns it; otherwise it returns
failure. So doing nonblocking I/O may involve
polling, in which you try the call repeatedly in a
loop until it succeeds. InputStream.available() is an
example of nonblocking I/O; it doesn’t strictly do a

read, but it tells you whether a read will block or
not.

Finally, asynchronous calls are like triggering a
background thread for doing the I/O. The function
call returns right away, regardless of whether the
data is ready or not. Once the data is ready, a
callback function (that you provided) is called to
notify you. The java.nio package in recent versions
of Java provides asynchronous I/O. So does
XMLHttpRequest in HTML/Javascript.

Blocking vs. Polling

• Blocking
– appropriate for thread-based tasks
– best for polite CPU sharing
– best for performance (I/O latency and throughput)
– bad inside in an event handler

• Polling
– appropriate for timer-based tasks
– may be less polite for CPU sharing
– may have lower performance

Spring 2008 6.831 User Interface Design and Implementation 16

Blocking I/O is appropriate for thread-based
programming. It’s simpler to code, because you
can write your code as if the data is always ready
and waiting for you. Blocking I/O automatically
suspends the thread making the call until the I/O is
ready, which leads to efficient thread scheduling
and good I/O performance. Blocking I/O is polite:
other threads on the computer can run at full speed
while your thread is sitting patiently blocked on its
I/O. (Or the CPU can go to sleep, if there are no
other threads that need to run, saving energy.)

But blocking I/O is risky inside the event-handling
thread. If you’re using a blocking call to read from
a network connection, and that network connection
hangs (say, because the network goes down), then
your whole UI freezes.

Conversely, nonblocking I/O is more appropriate
for timer-based tasks, which run in the event-
handling thread and wake up periodically to
process some I/O. The timer event uses
nonblocking I/O to consume data that has already
arrived, but it doesn’t block to wait for more.
Instead, it returns to the event loop and waits there
until the next timer event fires.

The event loop itself blocks if there are no events,
so the event-handling thread suspends politely
during this wait. But the cost of timer-based
polling is that it introduces artificial delays into I/O
handling. For example, if the timer interval is 50
msec, then even if data is ready after only 10 msec,
the timer will waste an extra 40 msec before it gets

around to handling it. Trying to reduce this latency
by increasing the timer frequency increases busy-
waiting – the CPU wastes time repeatedly
activating the thread to check for I/O. (With
blocking I/O, by contrast, the thread costs no CPU
time while it’s waiting, and it can wake up almost
immediately, in less than a microsecond.)

Hacking the Event Loop

• Maintain UI reponsiveness by periodically
polling the event queue
– Essentially creates a new event loop inside the

main event loop
– Modal dialogs and synchronous XMLHttpRequest

do this
• Merge long-running I/O tasks into the main

event loop
– Block on both user input and other I/O

simultaneously
– Single-threaded web browsers do this

Spring 2008 6.831 User Interface Design and Implementation 17

Sometimes, the best (or only) way to integrate user
interface handling with long-running tasks is by
changing the event loop.

Suppose you need to run a long task in the event-
handling thread, and you can’t break it into timer
chunks. One solution is periodically polling the
event queue inside your long task. In other words,
every so often, your long task checks whether there
are any events on the queue, and if so, it dispatches
them. (In Java, you can obtain a reference to the
event queue with Toolkit.getSystemEventQueue()).
As long as you poll the queue faster enough (every
50-100 ms), you can keep the user interface
reasonably responsive. This technique is often
called pumping the event queue.

Modal dialog boxes effectively do this. The
method call that shows a modal dialog box doesn’t
return until the user has dismissed the dialog, so it’s
effectively a long task. It avoids freezing the UI by
creating its own event loop that pumps the event
queue. The synchronous version of
XMLHttpRequest in HTML/Javascript does
something similar while it’s waiting for an I/O to
complete.

Another event-loop hack is to combine long-
running tasks into the main event loop. This only
works for GUI toolkits where the main event loop
is under your control, of course, so it can’t be done
in Swing or HTML, but can be done in SWT
(another Java toolkit) and low-level Windows and
X programming. If you control the main event
loop, then you control what happens during idle
time. You can also block on multiple input

channels simultaneously – specifically, both the
event queue and the I/O you’re trying to do – using
OS-specific mechanisms (like select() on Unix or
WaitForMultipleObjects on Windows). Before
threads were widely supported on Unix, this is how
most Unix web browsers had to be written.

Lazy Computation

• Lazy evaluation means delaying parts of the
long task until they’re actually needed
– Imagine a scrolling table showing 100,000

database records
– Just load 100 (or a screenful)
– As the user scrolls, load more screenfuls on

demand
• Works well when the time to compute each

chunk is short and predictable (< 100 ms)

Spring 2008 6.831 User Interface Design and Implementation 18

One lesson from this lecture should be that long-
running tasks in a GUI are tricky. So if you can
structure your system to avoid them, so much the
better. Lazy computation is one such technique.
Rather than doing a large computation or I/O in the
background, only do the part that the user can
actually see, e.g., the part that’s scrolled into view.
When the user scrolls to another part, compute that
part. This technique ensures that all computation
happens on one thread (since it’s fired by user input
events, i.e. scrolling) and is very polite with CPU
resources (since user input happens so rarely and
the program does nothing between input events).
But it obviously requires each chunk to be fast to
compute, so that the system has good response time
when the user scrolls.

Summary

• Long tasks must still keep the UI alive
• Know whether your task is CPU or I/O bound
• Threads require careful synchronization

– Especially in non-threadsafe toolkits like Swing
• Timers are very safe but force chopping up

the task and using polling for I/O

Spring 2008 6.831 User Interface Design and Implementation 19

