
Spring 2008 6.831 User Interface Design and Implementation 1

Lecture 22: Heuristic Evaluation

UI Hall of Fame or Shame?

Spring 2008 6.831 User Interface Design and Implementation 2

From Shauni Deshmukh:
“Kayak.com is a website that allows people to
search for flights. In my mind, this site stands out
from others (Travelocity, Expedia, etc.) because it
makes searching for the right flight easier and
faster. Kayak aggregates search results from several
different sites and therefore the user gets a large
amount of information all in one place.”

Let’s think about Kayak with respect to all our
design principles:
- learnability
- simplicity
- visibility
- user control
- error handling
- efficiency
- graphic design

Today’s Topics

• Heuristic evaluation

Spring 2008 6.831 User Interface Design and Implementation 3

Today’s lecture covers another technique for
finding usability problems in user interfaces:
heuristic evaluation. Heuristic evaluation is an
inspection technique, not unlike doing a code
review to find bugs in software.

Usability Guidelines (“Heuristics”)

• Plenty to choose from
– Nielsen’s 10 principles
– Norman’s rules from Design of Everyday Things
– Tognazzini’s 16 principles
– Shneiderman’s 8 golden rules

• Help designers choose design alternatives
• Help evaluators find problems in interfaces

(“heuristic evaluation”)

Spring 2008 6.831 User Interface Design and Implementation 4

To understand the technique, we should start by
defining what we mean by heuristic. Heuristics, or
usability guidelines, are rules that distill out the
principles of effective user interfaces. There are
plenty of sets of guidelines to choose from –
sometimes it seems like every usability researcher
has their own set of heuristics. Most of these
guidelines overlap in important ways, however.
The experts don’t disagree about what constitutes
good UI. They just disagree about how to organize
what we know into a small set of operational rules.
Heuristics can be used in two ways: during design,
to help you choose among alternative designs; and
during heuristic evaluation, to find and justify
problems in interfaces.

6.831 Principles

• Learnability
• Simplicity
• Visibility
• User control & freedom
• Errors
• Efficiency
• Graphic design

Spring 2008 6.831 User Interface Design and Implementation 5

To help relate these heuristics to what you already
know, here are the high-level principles that have
organized our lectures.
L = Learnability
S = Simplicity
V = Visibility
UC = User control & freedom
ER = Error handling
EF = Efficiency
GD = Graphic design

Nielsen Heuristics

1. Match the real world (L)
2. Consistency & standards (L)
3. Help & documentation (L)
4. User control & freedom (UC)
5. Visibility of system status (V)
6. Flexibility & efficiency (EF)
7. Error prevention (ER)
8. Recognition, not recall (ER)
9. Error reporting, diagnosis, and recovery (ER)
10.Aesthetic & minimalist design (GD, S)

Spring 2008 6.831 User Interface Design and Implementation 6

Jakob Nielsen, who invented the technique we’re
talking about, has 10 heuristics, which can be found
on his web site. (An older version of the same
heuristics, with different names but similar content,
can be found in his Usability Engineering book,
one of the recommended books for this course.)
We’ve talked about all of these in previous design
principles lectures (the lecture is marked by a letter,
e.g. L for Learnability).

Norman Principles

• Affordances (L)
• Natural mapping (L)
• Visibility (V)
• Feedback (V)

Spring 2008 6.831 User Interface Design and Implementation 7

We’ve also talked about some design guidelines
proposed by Don Norman: visibility, affordances,
natural mapping, and feedback.

Tog’s 16 Principles

1. Anticipation (EF)
2. Autonomy (UC)
3. Color blindness (GD)
4. Consistency (L)
5. Defaults (EF)
6. Efficiency (EF)
7. Explorable interfaces (UC)
8. Fitts’s Law (EF)
9. Human interface objects (L)

Spring 2008 6.831 User Interface Design and Implementation 8

10.Latency reduction (V)
11. Learnability (L)
12.Metaphors (L)
13. Protect users’ work (ER)
14. Readability (GD)
15. Track state (EF)
16. Visible navigation (V)

Another good list is Tog’s First Principles, 16
principles from Bruce Tognazzini
(http://www.asktog.com/basics/firstPrinciples.html)
. We’ve seen most of these in previous lectures.
Here are the ones we haven’t discussed (as such):
Autonomy means user is in control.
Human interface objects is another way of saying
direct manipulation: onscreen objects should
continuously perceivable, and manipulable by
physical actions.
Latency reduction means minimize response time
and give appropriate feedback for slow operations.

Shneiderman’s 8 Golden Rules

1. Consistency (L)
2. Shortcuts (EF)
3. Feedback (V)
4. Dialog closure (V)
5. Simple error handling (ER)
6. Reversible actions (UC)
7. Put user in control (UC)
8. Reduce short-term memory load (ER)

Spring 2008 6.831 User Interface Design and Implementation 9

Finally we have Shneiderman’s 8 Golden Rules of
UI design, which include most of the principles
we’ve already discussed.

Heuristic Evaluation

• Performed by an expert
• Steps

– Inspect UI thoroughly
– Compare UI against heuristics
– List usability problems
– Explain & justify each problem with heuristics

Spring 2008 6.831 User Interface Design and Implementation 10

Heuristic evaluation is a usability inspection
process originally invented by Nielsen. Nielsen has
done a number of studies to evaluate its
effectiveness. Those studies have shown that
heuristic evaluation’s cost-benefit ratio is quite
favorable; the cost per problem of finding usability
problems in an interface is generally cheaper than
alternative methods.
Heuristic evaluation is an inspection method. It is
performed by a usability expert – someone who
knows and understands the heuristics we’ve just
discussed, and has used and thought about lots of
interfaces.
The basic steps are simple: the evaluator inspects
the user interface thoroughly, judges the interface
on the basis of the heuristics we’ve just discussed,
and makes a list of the usability problems found –
the ways in which individual elements of the
interface deviate from the usability heuristics.
The Hall of Fame and Hall of Shame discussions
we have at the beginning of each class are informal
heuristic evaluations. In particular, if you look
back at previous lecture notes, you’ll see that many
of the usability problems identified in the Hall of
Fame & Shame are justified by appealing to a
heuristic.

How To Do Heuristic Evaluation

• Justify every problem with a heuristic
– “Too many choices on the home page (Aesthetic &

Minimalist Design)”
– Can’t just say “I don’t like the colors”

• List every problem
– Even if an interface element has multiple problems

• Go through the interface at least twice
– Once to get the feel of the system
– Again to focus on particular interface elements

• Don’t have to limit to the 10 Nielsen heuristics
– Nielsen’s 10 heuristics are easier to compare against
– Our 7 general principles are easier still

Spring 2008 6.831 User Interface Design and Implementation 11

Let’s look at heuristic evaluation from the evaluator’s
perspective. That’s the role you’ll be adopting in the next
homework, when you’ll serve as heuristic evaluators for each
others’ computer prototypes.
Here are some tips for doing a good heuristic evaluation. First,
your evaluation should be grounded in known usability
guidelines. You should justify each problem you list by
appealing to a heuristic, and explaining how the heuristic is
violated. This practice helps remove most of the (inevitable)
subjectivity involved in inspections: You can’t just say “that’s
an ugly yellow color.” (If it’s really yucky, you should pass
that subjective opinion back to the design team, but you’ll be
forced to identify it as subjective if you can’t find a heuristic to
justify it.)
List every problem you find. If a button has several problems
with it – inconsistent placement, bad color combination, bad
information scent – then each of those problems should be
listed separately. Some of the problems may be more severe
than others, and some may be easier to fix than others. It’s
best to get all the problems on the table in order to make these
tradeoffs.
Inspect the interface at least twice. The first time you’ll get an
overview and a feel for the system. The second time, you
should focus carefully on individual elements of the interface,
one at a time.
Finally, although you have to justify every problem with a
guideline, you don’t have to limit yourself to the Nielsen 10.
We’ve seen a number of specific usability principles that can
serve equally well: affordances, visibility, Fitts’s Law,
perceptual fusion, color guidelines, graphic design rules are a
few. The Nielsen 10 are helpful in that they’re a short list that
covers a wide spectrum of usability problems. For each
element of the interface, you can quickly look down the
Nielsen list to guide your thinking. You can also use the 6
high-level principles we’ve discussed (learnability, visibility,
user control, errors, efficiency, graphic design) to help spur
your thinking

Example

Spring 2008 6.831 User Interface Design and Implementation 12

Let’s try it on an example. Here’s a screenshot of
part of a web page (an intentionally bad
interface). A partial heuristic evaluation of the
screen is shown below. Can you find any other
usability issues?

• Shopping cart icon is not balanced with its
background whitespace (graphic design)

• Good: user is greeted by name (feedback)
• Red is used both for help messages and for error

messages (consistency, match real world)
• “There is a problem with your order”, but no

explanation or suggestions for resolution (error
reporting)

• ExtPrice and UnitPrice are strange labels (match
real world)

• Remove Hardware button inconsistent with
Remove checkbox (consistency)

• "Click here“ is unnecessary (simplicity)
• No “Continue shopping" button (user control &

freedom)
• Recalculate is very close to Clear Cart (error

prevention)
• “Check Out” button doesn’t look like other

buttons (consistency, both internal & external)
• Uses “Cart Title” and “Cart Name” for the same

concept (consistency)
• Must recall and type in cart title to load

(recognition not recall, error prevention,
efficiency)

Heuristic Evaluation Is Not User Testing

• Evaluator is not the user either
– Maybe closer to being a typical user than you are,

though
• Analogy: code inspection vs. testing
• HE finds problems that UT often misses

– Inconsistent fonts
– Fitts’s Law problems

• But UT is the gold standard for usability

Spring 2008 6.831 User Interface Design and Implementation 13

Heuristic evaluation is only one way to evaluate a
user interface. User testing -- watching users
interact with the interface – is another. User testing
is really the gold standard for usability evaluation.
An interface has usability problems only if real
users have real problems with it, and the only sure
way to know is to watch and see.
A key reason why heuristic evaluation is different
is that an evaluator is not a typical user either!
They may be closer to a typical user, however, in
the sense that they don’t know the system model to
the same degree that its designers do. And a good
heuristic evaluator tries to think like a typical user.
But an evaluator knows too much about user
interfaces, and too much about usability, to respond
like a typical user.
So heuristic evaluation is not the same as user
testing. A useful analogy from software
engineering is the difference between code
inspection and testing.
Heuristic evaluation may find problems that user
testing would miss (unless the user testing was
extremely expensive and comprehensive). For
example, heuristic evaluators can easily detect
problems like inconsistent font styles, e.g. a sans-
serif font in one part of the interface, and a serif
font in another. Adapting to the inconsistency
slows down users slightly, but only extensive user
testing would reveal it. Similarly, a heuristic
evaluation might notice that buttons along the edge
of the screen are not taking proper advantage of the
Fitts’s Law benefits of the screen boundaries, but
this problem might be hard to detect in user testing.

Hints for Better Heuristic Evaluation

• Use multiple evaluators
– Different evaluators find different problems
– The more the better, but diminishing returns
– Nielsen recommends 3-5 evaluators

• Alternate heuristic evaluation with user
testing
– Each method finds different problems
– Heuristic evaluation is cheaper

• It’s OK for observer to help evaluator
– As long as the problem has already been noted
– This wouldn’t be OK in a user test

Spring 2008 6.831 User Interface Design and Implementation 14

Now let’s look at heuristic evaluation from the
designer’s perspective. Assuming I’ve decided to
use this technique to evaluate my interface, how do
I get the most mileage out of it?
First, use more than one evaluator. Studies of
heuristic evaluation have shown that no single
evaluator can find all the usability problems, and
some of the hardest usability problems are found by
evaluators who find few problems overall (Nielsen,
“Finding usability problems through heuristic
evaluation”, CHI ’92). The more evaluators the
better, but with diminishing returns: each additional
evaluator finds fewer new problems. The sweet
spot for cost-benefit, recommended by Nielsen
based on his studies, is 3-5 evaluators.
One way to get the most out of heuristic evaluation
is to alternate it with user testing in subsequent trips
around the iterative design cycle. Each method
finds different problems in an interface, and
heuristic evaluation is almost always cheaper than
user testing. Heuristic evaluation is particularly
useful in the tight inner loops of the iterative design
cycle, when prototypes are raw and low-fidelity,
and cheap, fast iteration is a must.
In heuristic evaluation, it’s OK to help the
evaluator when they get stuck in a confusing
interface. As long as the usability problems that
led to the confusion have already been noted, an
observer can help the evaluator get unstuck and
proceed with evaluating the rest of the interface,
saving valuable time. In user testing, this kind of
personal help is totally inappropriate, because you
want to see how a user would really behave if
confronted with the interface in the real world,
without the designer of the system present to guide
them. In a user test, when the user gets stuck and
can’t figure out how to complete a task, you usually
have to abandon the task and move on to another
one.

Formal Evaluation Process
1. Training

– Meeting for design team & evaluators
– Introduce application
– Explain user population, domain, scenarios

2. Evaluation
– Evaluators work separately
– Generate written report, or oral comments recorded by an

observer
– Focus on generating problems, not on ranking their severity yet
– 1-2 hours per evaluator

3. Severity Rating
– Evaluators prioritize all problems found (not just their own)
– Take the mean of the evaluators’ ratings

4. Debriefing
– Evaluators & design team discuss results, brainstorm solutions

Spring 2008 6.831 User Interface Design and Implementation 15

Here’s a formal process for performing heuristic
evaluation.
The training meeting brings together the design
team with all the evaluators, and brings the
evaluators up to speed on what they need to know
about the application, its domain, its target users,
and scenarios of use.
The evaluators then go off and evaluate the
interface separately. They may work alone, writing
down their own observations, or they may be
observed by a member of the design team, who
records their observations (and helps them through
difficult parts of the interface, as we discussed
earlier). In this stage, the evaluators focus just on
generating problems, not on how important they are
or how to solve them.
Next, all the problems found by all the evaluators
are compiled into a single list, and the evaluators
rate the severity of each problem. We’ll see one
possible severity scale in the next slide. Evaluators
can assign severity ratings either independently or
in a meeting together. Since studies have found
that severity ratings from independent evaluators
tend to have a large variance, it’s best to collect
severity ratings from several evaluators and take
the mean to get a better estimate.
Finally, the design team and the evaluators meet
again to discuss the results. This meeting offers a
forum for brainstorming possible solutions,
focusing on the most severe (highest priority)
usability problems.
When you do heuristic evaluations in this class, I
suggest you follow this ordering as well: first focus
on generating as many usability problems as you
can, then rank their severity, and then think about
solutions.

Severity Ratings

• Contributing factors
– Frequency: how common?
– Impact: how hard to overcome?
– Persistence: how often to overcome?

• Severity scale
1. Cosmetic: need not be fixed
2. Minor: needs fixing but low priority
3. Major: needs fixing and high priority
4. Catastrophic: imperative to fix

Spring 2008 6.831 User Interface Design and Implementation 16

Here’s one scale you can use to judge the severity
of usability problems found by heuristic evaluation.
It helps to think about the factors that contribute to
the severity of a problem: its frequency of
occurrence (common or rare); its impact on users
(easy or hard to overcome), and its persistence
(does it need to be overcome once or repeatedly).
A problem that scores highly on several
contributing factors should be rated more severe
than another problem that isn’t so common, hard to
overcome, or persistent.

Evaluating Prototypes

• Heuristic evaluation works on:
– Sketches
– Paper prototypes
– Buggy implementations

• “Missing-element” problems are harder to
find on sketches
– Because you’re not actually using the interface,

you aren’t blocked by feature’s absence
– Look harder for them

Spring 2008 6.831 User Interface Design and Implementation 17

A final advantage of heuristic evaluation that’s
worth noting: heuristic evaluation can be applied to
interfaces in varying states of readiness, including
unstable implementations, paper prototypes, and
even just sketches. When you’re evaluating an
incomplete interface, however, you should be
aware of one pitfall. When you’re just inspecting a
sketch, you’re less likely to notice missing
elements, like buttons or features essential to
proceeding in a task. If you were actually
interacting with an active prototype, essential
missing pieces rear up as obstacles that prevent you
from proceeding. With sketches, nothing prevents
you from going on: you just turn the page. So you
have to look harder for missing elements when
you’re heuristically evaluating static sketches or
screenshots.

Writing Good Heuristic Evaluations

• Heuristic evaluations must communicate well to
developers and managers

• Include positive comments as well as criticisms
– “Good: Toolbar icons are simple, with good contrast and few

colors (minimalist design)”
• Be tactful

– Not: “the menu organization is a complete mess”
– Better: “menus are not organized by function”

• Be specific
– Not: “text is unreadable”
– Better: “text is too small, and has poor contrast (black text

on dark green background)”

Spring 2008 6.831 User Interface Design and Implementation 18

Here are some tips on writing good heuristic
evaluations. First, remember your audience: you’re
trying to communicate to developers. Don’t expect
them to be experts on usability, and keep in mind
that they have some ego investment in the user
interface. Don’t be unnecessarily harsh.
Although the primary purpose of heuristic
evaluation is to identify problems, positive
comments can be valuable too. If some part of the
design is good for usability reasons, you want to
make sure that aspect doesn’t disappear in future
iterations.

Suggested Report Format
• What to include:

– Problem
– Heuristic
– Description
– Severity
– Recommendation (if any)
– Screenshot (if helpful)

12. Severe: User may close window without saving data (error
prevention)

If the user has made changes without saving, and then closes the
window using the Close button, rather than File >> Exit, no confirmation
dialog appears.

Recommendation: show a confirmation dialog
or save automatically

Spring 2008 6.831 User Interface Design and Implementation 19

Cognitive Walkthrough:
Another Inspection Technique

• Cognitive walkthrough = expert inspection focused on
learnability

• Inputs:
– prototype
– task
– sequence of actions to do the task in the prototype
– user analysis

• For each action, evaluator asks:
– will user know what subgoal they want to achieve?
– will user find the action in the interface?
– will user recognize that it accomplishes the subgoal?
– will user understand the feedback of the action?

Spring 2008 6.831 User Interface Design and Implementation 20

Cognitive walkthrough is another kind of
usability inspection technique. Unlike heuristic
evaluation, which is general, a cognitive
walkthrough is particularly focused on evaluating
learnability – determining whether an interface
supports learning how to do a task by exploration.
In addition to the inputs given to a heuristic
evaluation (a prototype, typical tasks, and user
profile), a cognitive walkthrough also needs an
explicit sequence of actions that would perform
each task. This establishes the path that the
walkthrough process follows. The overall goal of
the process is to determine whether this is an easy
path for users to discover on their own.
Where heuristic evaluation is focusing on
individual elements in the interface, a cognitive
walkthrough focuses on individual actions in the
sequence, asking a number of questions about the
learnability of each action.

•Will user try to achieve the right subgoal? For
example, suppose the interface is an e-commerce
web site, and the overall goal of the task is to create
a wish list. The first action is actually to sign up
for an account with the site. Will users realize that?
(They might if they’re familiar with the way wish
lists work on other site; or if the site displays a
message telling them to do so; or if they try to
invoke the Create Wish List action and the system
directs them to register first.)
•Will the user find the action in the interface? This
question deals with visibility, navigation, and
labeling of actions.
•Will the user recognize that the action
accomplishes their subgoal? This question
addresses whether action labels and descriptions
match the user’s mental model and vocabulary.
•If the correct action was done, will the user
understand its feedback? This question concerns
visibility of system state – how does the user
recognize that the desired subgoal was actually
achieved.
Cognitive walkthrough is a more specialized
inspection technique than heuristic evaluation, but
if learnability is very important in your application,
then a cognitive walkthrough can produce very
detailed, useful feedback, very cheaply.

Summary

• Heuristic evaluation finds usability problems
by inspection

Spring 2008 6.831 User Interface Design and Implementation 21

