
Spring 2008 6.831 User Interface Design and Implementation 1

Lecture 21: Coordinate Transforms
& Clipping

UI Hall of Fame or Shame?

Spring 2008 6.831 User Interface Design and Implementation 2

From Lydia Chilton:
“Stellar is MIT's internal course website service.
Uses want to navigate the Stellar homepage to find
their class' Stellar page. Each course has a list of
about 100 classes. Unfortunately for the user, the
scroll panel only displays two classes at a time.”
(Also mentioned by Stanley Wang)

Let’s discuss the front page of Stellar with respect
to any of the UI design principles we’ve talked
about, e.g.:
- learnability
- visibility
- user control & freedom
- errors
- efficiency
- graphic design
- color design

Today’s Topics

• Coordinate transforms
• Clipping
• Other useful output techniques

Spring 2008 6.831 User Interface Design and Implementation 3

Today’s lecture is about advanced output
techniques. Most of what we’ll talk about is
coordinate transforms, which change the
coordinate system in which (x,y) coordinates are
interpreted. But we’ll also touch on clipping and a
few other useful tricks for output, like changing the
drawing context that you pass down to your
children in order to modify their appearance.

Coordinate Transforms

• Translation
– moves origin by dx, dy

• Scaling
– multiplies coordinates

by sx, sy

• Rotation
– rotates by θ around

origin

Spring 2008 6.831 User Interface Design and Implementation 4

6

Coordinate systems are relevant to all output models. In
the component model, every component in a view
hierarchy has its own local coordinate system, whose
origin is generally at the top left corner of the
component, with the y axis increasing down the screen.
(Postscript is an exception to this rule; its origin is the
bottom left, like conventional Cartesian coordinates.)
When you’re drawing a component, you start with the
component’s local coordinate system. But you can
change this coordinate system (a property of the graphics
context) using three transformations:
Translation moves the origin, effectively adding (dx,dy)
to every coordinate used in subsequent drawing.
Scaling shrinks or stretches the axes, effectively
multiplying subsequent x coordinates by a scaling factor
sx and subsequent y coordinates by sy.
Rotation rotates the coordinate system around the
origin.

Matrix Representation

• Normally points in 2D are represented by a
two-element vector [x,y]

• Transformations are 2x2 matrices

• But translation can’t be represented this way

Spring 2008 6.831 User Interface Design and Implementation 5

x
y

sx 0
0 sy

sxx
syy

= x
y

cosθ sinθ
-sinθ cosθ

Scaling Rotation

These operations are typically represented internally by
a transform matrix which can be multiplied by a
coordinate vector [x,y] to map it back to the original
coordinate system. Scaling and rotation are easy to
represent by matrix multiplication, but translation seems
harder, since it involves vector addition, not
multiplication.

Homogeneous Transforms

• We can represent all three transforms as
matrices if points are three-element vectors
[x,y,1]

Spring 2008 6.831 User Interface Design and Implementation 6

1 0 dx
0 1 dy
0 0 1

x
y
1

=
x+dx
y+dy
1

Translation

sx 0 0
0 sy 0
0 0 1

x
y
1

=
sxx
syy
1

Scaling
cosθ sinθ 0
-sinθ cosθ 0

0 0 1

x
y
1

Rotation

Homogeneous transforms offer a way around this
problem, allowing translations to be represented
homogeneously with the other transforms, so that the
effect of a sequence of coordinate transforms can be
multiplied together into a single matrix. Homogeneous
transforms add a dummy element 1 to each coordinate
vector.

Common Mistakes in Using Transforms

• Transforms affect later drawing, not the
current contents of the drawing surface

drawImage(“bunny.jpg”)
scale(2, 2)

• Transforms are not commutative
translate(50,50) scale(2,2)
scale(2, 2) translate(25,25)

Spring 2008 6.831 User Interface Design and Implementation 7

One misconception in using transforms is that they
apply to what you’ve already put on the drawing
surface – as if you were doing a rotate, scale, or
move operation in a drawing program. That’s not
the way it works. Transforms change the
coordinate system for subsequent drawing calls. In
the example shown here, the bunny already drawn
won’t be affected by the later scale() call.
Another misconception is that you can freely
reorder transforms – e.g., that you can gather up all
the translates, scales, and rotates you’ll have to do,
and do them in a single place at the beginning of
your paint() method. In general, that doesn’t work,
because transform operations are not commutative.
Transforms of the same type are commutative, of
course – two translates can be done in either order,
and in fact can trivially be combined into a single
translate by adding their components. Likewise,
two scaling operations can be commuted (and
combined by multiplying), and two rotations can be
commuted (or combined by adding the angles).
But two operations of different types cannot be
done in any order, because the results change
depending on the order.

Combining Multiple Transforms

• Scaling around a point (ox,oy)
1. Move the point back to the origin

translate(-ox,-oy)

2. Scale relative to the new origin
scale(sx, sy)

3. Move the point back (using the new scale)
translate(ox/sx, oy/sy)

Spring 2008 6.831 User Interface Design and Implementation 8

1 0 ox/sx
0 1 oy/sy
0 0 1

1 0 -ox
0 1 -oy
0 0 1

x
y
1

sx 0 0
0 sy 0
0 0 1

=
sx 0 -sxox+ox/sx
0 sy -syoy+oy/sy
0 0 1

x
y
1

Rotation around a point is similar: first make the
point the origin, then rotate, and then move the
point back. Undoing the translate is harder,
however, so Swing simplifies things by actually
giving you a rotate(theta,x,y) method that does all
the work.

Some Applications of Transforms

• Clock face

draw circle(0,0,2r,2r)
translate(r, r)
for i = 0 to 11 {
draw line (r-k, 0, r, 0)
rotate(2π/12)

}

Spring 2008 6.831 User Interface Design and Implementation 9

Transforms can make a lot of drawing easier. For
example, if you have to draw the same thing at
several places, just write one function that draws
the thing at (0,0), and use translate() before each
call to the function to put (0,0) in the right place.
Here’s a similar example – rather than calculate
where the ticks of a clock face should go, just use
rotation around the center of the clock face so that
you can draw the same tick each time. The radius
of the clock face is r, and the length of each clock
tick line is k.

Some Applications of Transforms

• Standard Cartesian origin

translate(0, height)
scale(1, -1)

Spring 2008 6.831 User Interface Design and Implementation 10

Another simple thing that’s sometimes useful is
transforming to the more familiar Cartesian
coordinate system, in which the origin is the lower-
left corner. Why do we have to scale() as well as
translate()?

Some Applications of Transforms

• Drawing in inches rather than pixels

dpi = pixels per inch
scale(dpi, dpi)

Spring 2008 6.831 User Interface Design and Implementation 11

One more simple example: if you want to draw in
physical units, some toolkits enable you to find out
what the (approximate) resolution of the screen is,
in pixels per inch, and you can set your scale to
that, so that you can draw a line by giving its
coordinates in inches rather than pixels.

Clipping

• Rectangular clipping regions
setClip(x,y,w,h)
drawString(“hello”)

• Stroke-based clipping
setClip(new Circle(x, y, w, h))
drawString(“hello”)

• Pixel-based clipping
drawImage(“bunny.jpg”)
setComposite(src in dst)
drawString(“hello”)

Spring 2008 6.831 User Interface Design and Implementation 12

hello

hello

hello

Virtually every GUI toolkit supports rectangular
clipping regions, because it’s an essential part of
the view hierarchy pattern – parents clip their
children by default. Clipping is also used for
damage regions, as we saw in the previous Output
lecture. The clipping region is also under your
control, if you want it to be – most graphics
contexts allow you to set your own clipping region
that will filter your subsequent drawing calls.
Often, however, the clipping region that you set
does not override the clipping region set by your
parent or set by the damage region – instead, the
final clipping region used for drawing may be the
intersection of the region you provide and the
damage region. One nice feature of rectangles is
that the intersection of any number of rectangles is
always a rectangle (or the empty set), so the
drawing package doesn’t have to worry about more
complicated shapes.
Good drawing systems (like Java Swing,
Postscript/PDF, and Apple Quartz) let you do
nonrectangular clipping, which comes in two
flavors. Stroke-based clipping uses an abstract
shape for clipping, which might be simple (like a
circle) or complex. In Swing, you can build up a
complex shape by taking unions and intersections
of simple shapes, or by defining its boundary using
line segments and curves.
The other approach uses the pixel model and alpha
compositing. The clipping region is an image,
which is composited with a drawing using the in
compositing operator we saw earlier in this lecture.

Component Model Effects

• Changing Graphics passed to children
– Transforms: rotation, zooming
– Clipping: setting new clipping regions

• Wrapping Graphics passed to children
– Intercept child calls and modify or capture them

• Painting onto offscreen images and then
transforming the images
– Blur, shimmer, masking

• Using components as rubber stamps
– Table, list, and tree cell renderers

Spring 2008 6.831 User Interface Design and Implementation 13

Using visual effects in the component model has
some special problems, especially if you want your
container to be decoupled from its component
children – i.e., if you want it to handle arbitrary
children who might draw themselves in arbitrary
ways. Here are some tricks you can use to change
the way your children draw themselves. (Some of
these ideas come from a good paper: Edwards et al,
“Systematic Output Modification in a 2D User
Interface Toolkit”, UIST ’97.)
One technique is to change the defaults in the
graphics context you pass down to your children.
For example, you can apply transformations to the
graphics context to persuade your children to draw
in different places, or magnify or shrink their
results. One problem with these kinds of
transformations is that they can screw up input and
automatic redraw. If a component is drawn
transformed, you have to transform hit testing and
input event coordinates in the same way; similarly,
if the component asks to repaint itself, its repaint
rectangle has to be transformed likewise. So if
your toolkit doesn’t support transforming input and
redraw, you should restrict the use of this technique
to components that don’t expect input and that will
notify you if they change.
Another trick is to put a wrapper around the
Graphics object – a wrapper that delegates to the
inner Graphics object, but changes the way certain
kinds of drawing is done. For example, you could
write a Graphics wrapper that produces a drop
shadow underneath every stroke drawn by a child.
You can also create an offscreen image buffer,
create a graphics context that uses it as a drawing
surface, and then have your children paint
themselves through this new graphics context. This
gives you complete access to the pixel image
produced by your children, so you can apply
arbitrary effects to it. For example, you can create
a drop shadow from the entire image, using
masking; you can apply a Gaussian filter to it to
blur the sharp edges; you can animate a
shimmering effect. The result of these operations
then gets copied to the onscreen drawing surface.
The final component-model technique is concerned
not with components as children, but rather
components as encapsulated drawing procedures –
rubber stamps that, given some parameters, can
paint a rendering of those parameters. For
example, you can create a label widget, fill in its
text, font, x, y, and size, and call its paint() method

to paint it on an arbitrary graphics context, even
though you never added it to a view hierarchy.
Several Swing classes use this approach – JList,
JTable, and JTree for example. These classes can
be configured with renderers which are simply
component factories, but the components are used
only for stamping out output. This approach is
even lighter-weight than the glyph pattern. You
might need only one JLabel to stamp out all the text
in a column, for example.

Scene Graphs

• Traditional 2D toolkits are limited in many ways
– View hierarchy is a tree (can’t share views)
– Parents must enclose descendents (and clip them)
– Parents translate children, but don’t otherwise transform

them
• Piccolo toolkit (designed for zooming user interfaces)

– View hierarchy is actually a graph, not merely a tree
– Components can translate, rotate, scale their children
– Parents transform but don’t clip their children by default
– Input events and repaint requests are transformed too

Spring 2008 6.831 User Interface Design and Implementation 14

Finally, let’s look at Piccolo, a novel UI toolkit
developed at University of Maryland. Piccolo is
specially designed for building zoomable interfaces,
which use smooth animated panning and zooming
around a large space.
Piccolo has a view hierarchy consisting of PNode
objects. But the hierarchy is not merely a tree, but in
fact a graph: you can install camera objects in the
hierarchy which act as viewports to other parts of the
hierarchy, so a component may be seen in more than one
place on the screen. Another distinction between Piccolo
and other toolkits is that every component has an
arbitrary transform relative to its parent’s coordinate
system – not just translation (which all toolkits provide),
but also rotation and scaling. The toolkit automatically
handles transforming not only output, but also input
event coordinates, hit tests, and repaint requests.
Furthermore, in Piccolo, parents do not clip their
children by default. If you want this behavior, you have
to request it by inserting a special clipping object (a
component) into the hierarchy. As a result, components
in Piccolo have two bounding boxes – the bounding box
of the node itself (getBounds()), and the bounding box of
the node’s entire subtree (getFullBounds()).
The widget set for Piccolo is fairly small by comparison
with toolkits like Swing and .NET, probably because
Piccolo is a research project with limited resources. It’s
worth noting, however, that Piccolo provides reusable
components for shapes (e.g. lines, rectangles, ellipses,
etc), which in other toolkits would require revering to
the stroke model.
Piccolo home page: http://www.cs.umd.edu/hcil/piccolo/
Overview:
http://www.cs.umd.edu/hcil/piccolo/learn/patterns.shtml
API documentation:
http://www.cs.umd.edu/hcil/jazz/learn/piccolo/doc-
1.1/api/

Summary

• Coordinate transforms can simplify drawing
• Visual effects in the component model may

require changing or wrapping the graphics
context

Spring 2008 6.831 User Interface Design and Implementation 15

