
Spring 2008 6.831 User Interface Design and Implementation 1

Lecture 20: Alpha Compositing

UI Hall of Fame or Shame?

Spring 2008 6.831 User Interface Design and Implementation 2
Source: Interface Hall of Shame

Once upon a time, this bizarre help message was
popped up by a website (Midwest Microwave)
when users requested to view the site’s product
catalog. The message appears before the catalog is
displayed. Clearly this message is a patch for
usability problems in the catalog itself. But the
message itself has a lot of usability problems of its
own! How many problems can you find?

Today’s Topics

• Alpha channel
• Antialiasing
• Alpha compositing rules
• Masks

Spring 2008 6.831 User Interface Design and Implementation 3

Today’s lecture is about alpha compositing – the
process of using the transparency value, alpha, to
combine two images together.

Transparency

• Alpha is a pixel’s transparency
– from 0.0 (transparent) to 1.0 (opaque)
– 32-bit RGBA pixels: each pixel has red, green,

blue, and alpha values
• Uses for alpha

– Antialiasing
– Nonrectangular images
– Translucent components

Spring 2008 6.831 User Interface Design and Implementation 4

In many graphics toolkits, the pixel model includes
a fourth channel in addition to red, green, and blue:
the pixel’s alpha value, which represents its degree
of transparency.

Antialiasing

Spring 2008 6.831 User Interface Design and Implementation 5

Simple Antialiased

Recall that antialiasing is a way to make an edge
look smoother. Instead of making a binary decision
between whether to draw a pixel near the edge
completely (opaque) or not at all (transparent),
antialiasing uses an alpha value that varies from 0
to 1 depending on how much of the pixel is covered
by the edge. The alpha value causes a blending
between the background color and the drawn color.
The overall effect is a fuzzier but smoother edge.

Alpha Compositing

• Compositing rules control how source and
destination pixels are combined

• Source
– Image
– Stroke drawing calls

• Destination
– Drawing surface

Spring 2008 6.831 User Interface Design and Implementation 6

When pixels include alpha values, drawing gets
more interesting. When you draw on a drawing
surface – whether it’s using stroke calls such as
drawRect(), or pixel copying like drawImage(),
there are several ways that the alpha values of your
drawing calls can interact with the alpha of the
destination surface. This process is called alpha
compositing.

Let’s set up the situation. We have a rectangle of
source pixels, which may be an image, or may be
the pixels produced by some drawing call. We also
have a rectangle of destination pixels, which is the
drawing surface you want to modify. Alpha
compositing determines what the resulting
destination pixels will be after the source drawing
is applied.

Porter-Duff Alpha Compositing Rules
Source pixel [Rs Gs Bs As]
Destination pixel [Rd Gd Bd Ad]

1. Premultiply RGB by A
[RGB]s = [RGB]sAs
[RGB]d = [RGB]dAd

2. Compute weighted combination of source and
destination pixel

[RGBA]d = [RGBA]sfs + [RGBA]dfd
for weights fs, fd determined by the compositing rule

3. Postdivide RGB by A
[RGB]d = [RGB]d / Ad unless Ad == 0

Spring 2008 6.831 User Interface Design and Implementation 7

The compositing rules used by graphics toolkits
were specified by Porter & Duff in a landmark
paper (Porter & Duff, “Compositing Digital
Images”, Computer Graphics v18 n3, July 1984).
Their rules constitute an algebra of a few simple
binary operators between the two images: over, in,
out, atop, and xor. Altogether, there are 12
different operations, each using a different
weighted combination of corresponding source
pixel and destination pixel, where the weights are
determined by alpha values.

The presentation of the rules is simplified if we
assume that each pixel’s RGB value is
premultiplied by its alpha value. For opaque
pixels (A=1), this has no effect; for transparent
pixels (A=0), this sets the RGB value to 0.

After the composition, the multiplication by alpha
is undone by dividing each RGB value by the
(final) alpha value of the pixel. If we were going to
do a sequence of compositing operations, however,
we might skip this step, deferring the division until
the final composition is completed. (Java gives you
an option, when you create an offscreen image
buffer, whether you want the RGB values to be
stored premultiplied by alpha; this representation
will allow faster compositing.)

Simple Copying

clear fs=0, fd=0
[RGBA]d = 0

src fs=1, fd=0
[RGBA]d = [RGBA]s

dst fs=0, fd=1
[RGBA]d = [RGBA]d

Spring 2008 6.831 User Interface Design and Implementation 8

Here are the three simplest rules. They’re not
particularly useful in practice, but they’re included
to make the algebra complete.

clear combines the source and destination pixels
with zero weights, so the effect is to fill the
destination with transparent pixels. (The
transparent pixels happen to be black, i.e. RGB=0,
but the color of a transparent pixel is irrelevant.)

src replaces the destination image with the source
image.

dst completely ignores the source image, and
leaves the destination unchanged.

Layering

src over dst fs=1, fd=1-As
[RGBA]d =

[RGBA]s + [RGBA]d(1-As)

dst over src fs=1-Ad, fd=1
[RGBA]d =

[RGBA]d + [RGBA]s(1-Ad)

Spring 2008 6.831 User Interface Design and Implementation 9

The next two rules produce layering effects.

src over dst produces the effect of drawing the
source pixels on top of the destination pixels.
Wherever the source is opaque (As=1), the existing
destination pixel is completely ignored; and
wherever the source is transparent (As=0), only the
destination pixel shows through. (Note that
RGBs=0 when As=0, because we have
premultiplied by alpha). If the source is translucent
(0 < As < 1), then the final pixel is a mix of the
source and destination pixel.

dst over src produces the opposite effect – putting
the source image behind the destination image.
This is one way to affect drawing Z-order without
having to change the actual order in which drawing
calls are made. Be careful, though – in order for
dst over src to succeed in a useful way, the
destination image buffer must actually have an
alpha channel, and it can’t have been already been
filled with opaque pixels. A typical drawing
surface in Java (the Graphics object passed to your
paintComponent() method) has already been filled
with an opaque background, so you won’t see any
of your source drawing if you use dst over src.

Alpha Compositing in Practice

• Most painting uses over

Spring 2008 6.831 User Interface Design and Implementation 10

Translucent components
& animated fade-in, fade-out

Icons and UI graphics
with nonrectangular boundaries

Antialiased text and strokes

In practice, most drawing uses over, including
translucent components (like the Mac OS X modal
sheet shown here) and nonrectangular images.

Masking

src in dst
[RGBA]d = [RGBA]sAd

dst in src
[RGBA]d = [RGBA]dAs

src out dst
[RGBA]d = [RGBA]s(1-Ad)

dst out src
[RGBA]d = [RGBA]d(1-As)

Spring 2008 6.831 User Interface Design and Implementation 11

The next set of rules are for masking. Masking is
like clipping – it restricts drawing to a certain area.
But where clipping uses a shape (such as a
rectangle) to describe the area, masking uses a pixel
array. In older graphics systems, this pixel array
was simply a bitmap: 1s for pixels that should be
drawn, 0s for pixels that shouldn’t be drawn. But
with alpha compositing, the alpha channel
represents the mask, a value ranging from 0.0 to 1.0
depending on how much of a pixel should be
drawn.

Notice that these masking use the RGB values from
only one of the images (source or destination). The
other image is used only for its alpha channel; its
RGB values are ignored.

Alpha Compositing in Practice

• Interesting effects can be obtained with in

Spring 2008 6.831 User Interface Design and Implementation 12

Reflections

Texture fills

Here are some of the applications for masking:

- generating the drop shadow of an arbitrary image
(src is an image, dst is just filled gray – dst in src.
Often a blur transform is added as well, to soften
the edge.)

- generating a reflection of an arbitrary image (see
the picture)

- pattern or texture filling (src is a pattern, like tiled
images, dst is a filled or stroked shape – src in dst)

- clipping where the clip region should have
antialiased borders (src is drawing calls, dst is filled
clip region shape with antialiased borders, src in
dst)

Many of these effects can be achieved in an image
processing application like Photoshop, using the
same kinds of techniques – creating an alpha-
channel mask and using it with a source image in a
compositing operation. But keep in mind that that
process produces a static image, which might be
useful for an icon or button label. If you want to
create an effect dynamically, e.g. with the user’s
data, then you need to be able to program the
compositing in a GUI toolkit, like Java2D.

Other Masking

src atop dst
[RGBA]d =

[RGBA]sAd + [RGBA]d(1-As)

dst atop src
[RGBA]d =

[RGBA]s(1-Ad) + [RGBA]dAs

src xor dst
[RGBA]d =

[RGBA]s(1-Ad) + [RGBA]d(1-As)

Spring 2008 6.831 User Interface Design and Implementation 13

These are the last three rules. src atop dst is like
src over dst, but it omits any source pixels where
the destination is transparent. And src xor dst
omits any pixels where both the source and the
destination are nontransparent.

atop and xor aren’t terribly useful in practice;
earlier versions of Java actually omitted them, but
they’re present in Java 1.5.

Summary

• Alpha channel is useful for smooth
antialiased edges

• Alpha compositing rules allow for interesting
effects

Spring 2008 6.831 User Interface Design and Implementation 14

