
Spring 2008 6.831 User Interface Design and Implementation 1

Lecture 18: Predictive Evaluation

UI Hall of Fame or Shame?

Spring 2008 6.831 User Interface Design and Implementation 2

From Daniel Gutierrez:

“The speed dial implemented into the Opera web
browser (screen shot attached) is designed to
provide a type of visual bookmark for quick access
to web pages. It appears in a newly created tab and
begins to load each of the websites to create a
preview thumbnail for each one. When you click
on any of these, it navigates the browser to the web
page. One cool thing about this is that it actually
starts to cache images and similar content from the
websites it’s loading while the browser is idling on
this screen.”

Let’s talk about this interface in terms of:

- visibility

- efficiency

- graphic design

Today’s Topics

• Keystroke-level models
• GOMS
• CPM-GOMS

Spring 2008 6.831 User Interface Design and Implementation 3

Today’s lecture is about predictive evaluation –
the holy grail of usability engineering. If we had an
accurate model for the way a human used a
computer interface, we would be able to predict
the usability of a design, without having to actually
build it, test it against real people, and measure
their behavior. User interface design would then
become more like other fields of engineering. Civil
engineers can use models (of material stress and
strain) to predict the load that can be carried by a
bridge; they don’t have to build it and test it to
destruction first. As user interface designers, we’d
like to do the same thing.

Predictive Evaluation

• Predictive evaluation uses an engineering
model of human cognition to predict usability

• Model is
– abstract
– quantitative
– approximate
– estimated from user experiments

Spring 2008 6.831 User Interface Design and Implementation 4

PP CP MP

~100 ms ~70 ms ~70 ms

At its heart, any predictive evaluation technique
requires a model for how a user interacts with an
interface. We’ve already seen one such model, the
Newell/Card/Moran human information processing
model.

This model needs to be abstract – it can’t be as
detailed as an actual human being (with billions of
neurons, muscles, and sensory cells), because it
wouldn’t be practical to use for prediction. The
model we looked at boiled down the rich aspects of
information processing into just three processors
and two memories.

It also has to be quantitative, i.e., assigning
numerical parameters to each component. Without
parameters, we won’t be able to compute a
prediction. We might still be able to do qualitative
comparisons, such as we’ve already done to
compare, say, Mac menu bars with Windows menu
bars, or cascading submenus. But our goals for
predictive evaluation are more ambitious.

These numerical parameters are necessarily
approximate; first because the abstraction in the
model aggregates over a rich variety of different
conditions and tasks; and second because human
beings exhibit large individual differences,
sometimes up to a factor of 10 between the worst
and the best. So the parameters we use will be
averages, and we may want to take the variance of
the parameters into account when we do
calculations with the model.

Where do the parameters come from? They’re
estimated from experiments with real users. The
numbers seen here for the general model of human
information processing (e.g., cycle times of
processors and capacities of memories) were
inferred from a long literature of cognitive
psychology experiments. But for more specific
models, parameters may actually be estimated by
setting up new experiments designed to measure
just that parameter of the model.

Advantages of Predictive Evaluation

• Don’t have to build UI prototype
– Can compare design alternatives with no

implementation whatsoever
• Don’t have to test real live users
• Theory provides explanations of UI problems

– So it points to the areas where design can be
improved

– User testing may only reveal problems, not explain
them

Spring 2008 6.831 User Interface Design and Implementation 5

Predictive evaluation doesn’t need real users (once
the parameters of the model have been estimated,
that is). Not only that, but predictive evaluation
doesn’t even need a prototype. Designs can be
compared and evaluated without even producing
design sketches or paper prototypes, let alone code.

Another key advantage is that the predictive
evaluation not only identifies usability problems,
but actually provides an explanation of them based
on the theoretical model underlying the evaluation.
So it’s much better at pointing to solutions to the
problems than either inspection techniques or user
testing. User testing might show that design A is
25% slower than design B at a doing a particular
task, but it won’t explain why. Predictive
evaluation breaks down the user’s behavior into
little pieces, so that you can actually point at the
part of the task that was slower, and see why it was
slower.

Keystroke-Level Model (KLM)

• Keystroke
• Button press or release with mouse
• Point with mouse
• Draw line with mouse
• Home hands between mouse and keyboard
• Mentally prepare

Spring 2008 6.831 User Interface Design and Implementation 6

The first predictive model was the keystroke level
model (proposed by Card, Moran & Newell, “The
Keystroke Level Model for User Performance Time
with Interactive Systems”, CACM, v23 n7, July
1978).

This model seeks to predict efficiency (time taken
by expert users doing routine tasks) by breaking
down the user’s behavior into a sequence of the
five primitive operators shown here.

Most of the operators are physical – the user is
actually moving their muscles to perform them.
The M operator is different – it’s purely mental
(which is somewhat problematic, because it’s hard
to observe and estimate). The M operator stands in
for any mental operations that the user does. M
operators separate the task into chunks, or steps,
and represent the time needed for the user to recall
the next step from long-term memory.

KLM Analysis

• Encode a method as a sequence of physical
operators (KPHD)

• Use heuristic rules to insert mental operators
(M)

• Add up times for each operator to get total
time for method

Spring 2008 6.831 User Interface Design and Implementation 7

Here’s how to create a keystroke level model for a
task.

First, you have to focus on a particular method for
doing the task. Suppose the task is deleting a word
in a text editor. Most text editors offer a variety of
methods for doing this, e.g.: (1) click and drag to
select the word, then press the Del key; (2) click at
the start and shift-click at the end to select the
word, then press the Del key; (3) click at the start,
then press the Del key N times; (4) double-click the
word, then select the Edit/Delete menu command;
etc.

Next, encode the method as a sequence of the
physical operators: K for keystrokes, B for mouse
button presses or releases, P for pointing tasks, H
for moving the hand between mouse and keyboard,
and D for drawing tasks.

Next, insert the mental preparation operators at the
appropriate places, before each chunk in the task.
Some heuristic rules have been proposed for
finding these chunk boundaries.

Finally, using estimated times for each operator,
add up all the times to get the total time to run the
whole method.

Estimated Operator Times

• Keystroke determined by typing speed
0.28 s average typist (40 wpm)
0.08 s best typist (155 wpm)
1.20 s worst typist

• Button press or release
0.1 s highly practiced, no need to acquire button

• Pointing determined by Fitts’s Law
T = a + b log(d/s + 1) = a + b ID
0.8 + 0.1 ID [Card 1978]
0.1 + 0.4 ID [Epps 1986]
-0.1 + 0.2 ID [MacKenzie 1990, mouse selection]
0.14 + 0.25 ID [MacKenzie 1990, mouse dragging]

OR
T ~ 1.1 s for all pointing tasks

• Drawing determined by steering law
Spring 2008 6.831 User Interface Design and Implementation 8

The operator times can be estimated in various
ways.

Keystroke time can be approximated by typing
speed. Second, if we use only an average estimate
for K, we’re ignoring the 10x individual differences
in typing speed.

Button press time is approximately 100
milliseconds. Mouse buttons are faster than
keystrokes because there are far fewer mouse
buttons to choose from (reducing the user’s
reaction time) and they’re right under the user’s
fingers (eliminating lateral movement time), so
mouse buttons should be faster to press. Note that a
mouse click is a press and a release, so it costs 0.2
seconds in this model.

Pointing time can be modelled by Fitts’s Law, but
now we’ll actually need numerical parameters for
it. Empirically, you get a better fit to
measurements if the index of difficulty is
log(D/S+1); but even then, differences in pointing
devices and methods of measurement have
produced wide variations in the parameters (some
of them seen here). There’s even a measurable
difference between a relaxed hand (no mouse
buttons pressed) and a tense hand (dragging). Also,
using Fitts’s Law depends on keeping detailed track
of the location of the mouse pointer in the model,
and the positions of targets on the screen. An
abstract model like the keystroke level model
dispenses with these details and just assumes that
Tp ~ 1.1s for all pointing tasks. If your design
alternatives require more detailed modeling,
however, you would want to use Fitts’s Law more
carefully.

Drawing time, likewise, can be modeled by the
steering law: T = a + b (D/S).

Estimated Operator Times

• Homing estimated by measurement
0.36 s (between keyboard and mouse)

• Mental preparation estimated by
measurement
1.35 s

Spring 2008 6.831 User Interface Design and Implementation 9

Homing time is estimated by a simple experiment
in which the user moves their hand back and forth
from the keyboard to the mouse.

Finally we have the Mental operator. The M
operator does not represent planning, problem
solving, or deep thinking. None of that is modeled
by the keystroke level model. M merely represents
the time to prepare mentally for the next step in the
method – primarily to retrieve that step (the thing
you’ll have to do) from long-term memory. A step
is a chunk of the method, so the M operators divide
the method into chunks.

The time for each M operator was estimated by
modeling a variety of methods, measuring actual
user time on those methods, and subtracting the
time used for the physical operators – the result was
the total mental time. This mental time was then
divided by the number of chunks in the method.
The resulting estimate (from the 1978 Card &
Moran paper) was 1.35 sec – unfortunately large,
larger than any single physical operator, so the
number of M operators inserted in the model may
have a significant effect on its overall time. (The
standard deviation of M among individuals is
estimated at 1.1 sec, so individual differences are
sizeable too.)

Heuristic Rules for adding M’s

• Basic idea:
– M before every chunk in the method that must be recalled

from long-term memory or that involves a decision
• Before each task or subtask
• Deciding which way to do a task
• Retrieving a chunk from memory

– Command name
– File name
– Parameter value

• Finding something on screen
– So P is often preceded by M
– Unless the location is well-known from practice, in which case the visual

search is overlapped with the motor action
• Verifying entry or action result

– e.g. before pressing OK on a dialog

Spring 2008 6.831 User Interface Design and Implementation 10

One of the trickiest parts of keystroke-level
modeling is figuring out where to insert the M’s,
because it’s not always clear where the chunk
boundaries are in the method. Here are some
heuristic rules, suggested by Kieras (“Using the
Keystroke-Level Model to Estimate Execution
Times”, 2001).

Example: Deleting a Word

• Shift-click selection
M
P [start of word]
K [click]
M
P [end of word]
K [shift]
K [click]
H [to keyboard]
M
K [Del]

• Total: 3M + 2P + 4K
= 7.37 sec

Spring 2008 6.831 User Interface Design and Implementation 11

• Del key N times
M
P [start of word]
K [click]
H
M
K [Del]
x n [length of word]

• Total: 2M + P + H +
(n+1)K
= 4.44 + 0.28n sec

Here are keystroke-level models for two methods
that delete a word.

The first method clicks at the start of the word,
shift-clicks at the end of the word to highlight it,
and then presses the Del key on the keyboard.
Notice the H operator for moving the hand from the
mouse to the keyboard. That operator may not be
necessary if the user uses the hand already on the
keyboard (which pressed Shift) to reach over and
press Del.

The second method clicks at the start of the word,
then presses Del enough times to delete all the
characters in the word.

Empirical Validation of KLM

Spring 2008 6.831 User Interface Design and Implementation 12

The developers of the KLM model tested it by
comparing its predications against the actual
performance of users on 11 different interfaces (3
text editors, 3 graphical editors, and 5 command-
line interfaces like FTP and chat).

28 expert users were used in the test (most of
whom used only one interface, the one they were
expert in).

The tasks were diverse but simple: e.g. substituting
one word with another; moving a sentence to the
end of a paragraph; adding a rectangle to a
diagram; sending a file to another computer. Users
were told the precise method to use for each task,
and given a chance to practice the method before
doing the timed tasks.

Each task was done 10 times, and the observed
times are means of those tasks over all users.

The results are pretty close – the predicted time for
most tasks is within 20% of the actual time. (To
give you some perspective, civil engineers usually
expect that their analytical models will be within
20% error in at least 95% of cases, so KLM is
getting close to that.)

One flaw in this study is the way they estimated the
time for mental operators – it was estimated from
the study data itself, rather than from separate, prior

observations.

For more details, see the paper from which this
figure was taken: Card, Moran & Newell, “The
Keystroke Level Model for User Performance Time
with Interactive Systems”, CACM, v23 n7, July
1978.

Applications of KLM

• Comparing designs & methods
• Parametric analysis

Spring 2008 6.831 User Interface Design and Implementation 13

T

n

Del n times

Shift-click

Keystroke level models can be useful for
comparing efficiency of different user interface
designs, or of different methods using the same
design.

One kind of comparison enabled by the model is
parametric analysis – e.g., as we vary the
parameter n (the length of the word to be deleted),
how do the times for each method vary?

Using the approximations in our keystroke level
model, the shift-click method is roughly constant,
while the Del-n-times method is linear in n. So
there will be some point n below which the Del key
is the faster method, and above which Shift-click is
the faster method. Predictive evaluation not only
tells us that this point exists, but also gives us an
estimate for n.

But here the limitations of our approximate models
become evident. The shift-click method isn’t really
constant with n – as the word grows, the distance
you have to move the mouse to click at the end of
the word grows likewise. Our keystroke-level
approximation hasn’t accounted for that, since it
assumes that all P operators take constant time. On
the other hand, Fitts’s Law says that the pointing
time would grow at most logarithmically with n,
while pressing Del n times clearly grows linearly.
So the approximation may be fine in this case.

Limitations of KLM

• Only expert users doing routine (well-learned)
tasks

• Only measures efficiency
– Not learnability, memorability, errors, etc.

• Ignores
– errors (methods must be error-free)
– parallel action (shift-click)
– mental workload (e.g. attention & WM limits)
– planning & problem solving (how does user select

the method?)
– fatigue

Spring 2008 6.831 User Interface Design and Implementation 14

Keystroke level models have some limitations --
we’ve already discussed the focus on expert users
and efficiency. But KLM also assumes no errors
made in the execution of the method, which isn’t
true even for experts. Methods may differ not just
in time to execute but also in propensity of errors,
and KLM doesn’t account for that.

KLM also assumes that all actions are serialized,
even actions that involve different hands (like
moving the mouse and pressing down the Shift
key). Real experts don’t behave that way; they
overlap operations.

KLM also doesn’t have a fine-grained model of
mental operations. Planning, problem solving,
different levels of working memory load can all
affect time and error rate; KLM lumps them into
the M operator.

GOMS

• Goals
• Operators
• Methods
• Selection rules

• GOMS offers a language for task analysis
and high-level design description
– can be abstract or detailed
– can be qualitative or quantitative

Spring 2008 6.831 User Interface Design and Implementation 15

GOMS is a richer model that considers the
planning and problem solving steps. Starting with
the low-level Operators and Methods provided by
KLM, GOMS adds on a hierarchy of high-level
Goals and subgoals (like we looked at for task
analysis) and Selection rules that determine how
the user decides which method will be used to
satisfy a goal.

Example

• Goal: delete text (n chars long)
– Select: method 1 if n > 10

method 2 if n < 10
– Method 1: Goal: highlight text & delete

• Goal: highlight text
– Point
– Click
– Point
– Shift
– Click

– Method 2: Goal: delete n chars
…

Spring 2008 6.831 User Interface Design and Implementation 16

Here’s an outline of a GOMS model for the text-
deletion example we’ve been using. Notice the
selection rule that chooses between two methods
for achieving the goal, based on an observation of
how many characters need to be deleted.

NGOMSL

• “Natural GOMS language”
– formal language with restricted English syntax

• Addresses gaps in KLM modeling
– learning time measured by the # of NGOMSL

statements
– working memory use modeled by Retain and

Recall statements
– no errors or problem solving

Spring 2008 6.831 User Interface Design and Implementation 17

GOMS has several variants. One of them, called
NGOMSL, uses a formal language to restrict how
you model goals, subgoals, and selection rules.
The benefit of the formal language is that each
statement roughly corresponds to a primitive
mental chunk, so you can estimate the learning
time of a task by simply counting the number of
statements in the model for the task. The language
also has statements that represent working memory
operations (Retain and Recall), so that excessive
use of working memory can be estimated by
executing the model.

NGOMSL

Spring 2008 6.831 User Interface Design and Implementation 18

Here’s a snippet of an NGOMSL model for text
editing (from John & Kieras, “The GOMS Family
of User Interface Analysis Techniques: Comparison
and Contrast”, ACM TOCHI, v3 n4, Dec 1996).

CPM-GOMS

• CPM-GOMS models parallel operations
– e.g. point & shift-click

• Uses parallel cognitive model
– each processor is serial
– different processors run

in parallel

Spring 2008 6.831 User Interface Design and Implementation 19

PP CP

MP left hand

MP right hand

MP eyes

CPM-GOMS (Cognitive-Motor-Perceptual) is
another variant of GOMS, which is even more
detailed than the keystroke-level model. It tackles
the serial assumption of KLM, allowing multiple
operators to run at the same time. The parallelism
is dictated by a model very similar to the
Card/Newell/Moran information processing model
we saw earlier. We have a perceptual processor
(PP), a cognitive processor (CP), and multiple
motor processors (MP), one for each major muscle
system that can act independently. For GUI
interfaces, the muscles we mainly care about are
the two hands and the eyes.

The model makes the simple assumption that each
processor runs tasks serially (one at a time), but
different processors run in parallel.

Critical Path Determines Time

Spring 2008 6.831 User Interface Design and Implementation 20

PP

CP

MP
right

MP
left

MP
eye

0

start
eye move

move eye
to target

start
mouse move

50 50

30

perceive
target

move
mouse

100

480

perceive
cursor

start
Shift press

verify
target

press
Shift
100

50 50

100

We build a CPM-GOMS model as a graph of tasks.
Here’s the start of a Point-Shift-click operation.

First, the cognitive processor (which initiates
everything) decides to move your eyes to the
pointing target, so that you’ll be able to tell when
the mouse pointer reaches it.

Next, the eyes actually move (MP eye), but in
parallel with that, the cognitive processor is
deciding to move the mouse. The right hand’s
motor processor handles this, in time determined by
Fitts’s Law.

While the hand is moving, the perceptual processor
and cognitive processor are perceiving and
deciding that the eyes have found the target.

Then the cognitive processor decides to press the
Shift key, and passes this instruction on to the left
hand’s motor processor.

In CPM-GOMS, what matters is the critical path
through this graph of overlapping tasks – the path
that takes the longest time, since it will determine
the total time for the method.

Notice how much more detailed this model is! This
would be just P K in the KLM model. With greater
accuracy comes a lot more work.

Another issue with CPM-GOMS is that it models
extreme expert performance, where the user is
working at or near the limits of human information
processing speed, parallelizing as much as possible,
and yet making no errors.

Analysis of Phone Operator Workstation

• Phone company considering redesign of a
workstation (keyboard + software) for telephone
operators (411 service)
– Reduced keystrokes needed for common tasks
– Put frequently-used keys closer to user’s fingers

• But new design was 4% slower than old design
= 1 sec/call = $3 million/year

• Keystroke-level model has no explanation
• But CPM-GOMS explained why:

– Keystrokes removed were not on the critical path
• Used during slack time, while greeting customer

– A keystroke was moved from the beginning of call (during
slack time) to later (putting it on the critical path)

Spring 2008 6.831 User Interface Design and Implementation 21

CPM-GOMS had a real-world success story.
NYNEX (a phone company) was considering
replacing the workstations of its telephone
operators. The redesigned workstation they were
thinking about buying had different software and a
different keyboard layout. It reduced the number of
keystrokes needed to handle a typical call, and the
keyboard was carefully designed to reduce travel
time between keys for frequent key sequences. It
even had four times the bandwidth of the old
workstation (1200 bps instead of 300). A back-of-
the-envelope calculation, essentially using the
KLM model, suggested that it should be 20% faster
to handle a call using the redesigned workstation.
Considering NYNEX’s high call volume, this
translated into real money – every second saved on
a 30-second operator call would reduce NYNEX’s
labor costs by $3 million/year.

But when NYNEX did a field trial of the new
workstation (an expensive procedure which
required retraining some operators, deploying the
workstation, and using the new workstation to field
calls), they found it was actually 4% slower than
the old one.

A CPM-GOMS model explained why. Every
operator call started with some “slack time”, when
the operator greeted the caller (e.g. “Thank you for
calling NYNEX, how can I help you?”) Expert
operators were using this slack time to set up for
the call, pressing keys and hovering over others.
So even though the new design removed keystrokes
from the call, the removed keystrokes occurred
during the slack time – not on the critical path of
the call, after the greeting. And the 4% slowdown
was due to moving a keystroke out of the slack
time and putting it later in the call, adding to the
critical path. On the basis of this analysis, NYNEX
decided not to buy the new workstation. (Gray,
John, & Atwood, “Project Ernestine: Validating a
GOMS Analysis for Predicting and Explaining
Real-World Task Performance”, Human-Computer
Interaction, v8 n3, 1993.)

This example shows how predictive evaluation can
explain usability problems, rather than merely
identifying them (as the field study did).

