
Spring 2008 6.831 User Interface Design and Implementation 1

Lecture 16: Constraints & Layout

UI Hall of Fame or Shame?

Spring 2008 6.831 User Interface Design and Implementation 2

Suggested by Dennis Ramdass

This example was suggested by Dennis Ramdass.
Doodle is a web site for conducting small polls, which
is most commonly used to schedule an event by
asking a group of people to mark their availability.

The interface for entering your choices is shown on
the left – you enter your name in the textbox, click on
the checkboxes to mark your availability, and then
click Participate.

The editing interface is shown on the right. You click
the Edit An Entry or Delete An Entry link (shown at
the top), and then the page displays Edit and Delete
links next to individual entries (shown at the bottom).

Let’s discuss this interface from the perspective of:

- learnability

- efficiency

- graphic design

- user control & freedom

- error prevention

Today’s Topics

• Automatic layout
• Layout managers
• Constraints

Spring 2008 6.831 User Interface Design and Implementation 3

Today’s lecture is about automatic layout –
determining the positions and sizes of UI
components. Automatic layout is an good example of
declarative user interface specification. The
programmer specifies what kind of layout is desired
by attaching properties or layout managers to the
view hierarchy, and then an automatic algorithm
(layout propagation) actually computes the layout.

We’ll also talk about constraints, which is a rather
low-level, but also declarative, technique for
specifying layout. Constraints are useful for more
than just layout; unfortunately most GUI toolkits
don’t have a general-purpose constraint solver built
in. But constraints are nevertheless a useful way to
think about relationships in a user interface
declaratively, even if you have to translate them to
procedural code yourself.

Automatic Layout

• Layout determines the sizes and positions of
components on the screen
– Also called geometry in some toolkits

• Declarative layout
– Java: layout managers
– CSS: layout styles

• Procedural layout
– Write code to compute positions and sizes

Spring 2008 6.831 User Interface Design and Implementation 4

In Java, automatic layout is a declarative process.
First you specify the graphical objects that should
appear in the window, which you do by creating
instances of various objects and assembling them
into a component hierarchy. Then you specify how
they should be related to each other, by attaching a
layout manager to each container.

You can contrast this to a procedural approach to
layout, in which you actually write Java or Javascript
code that computes positions and sizes of graphical
objects. (You probably wrote a lot of this kind of
code in the checkerboard output assignment, for
example, to compute where each checker should
appear on the screen.)

Reasons to Do Automatic Layout

• Higher level programming
– Shorter, simpler code

• Adapts to change
– Window size
– Font size
– Widget set (or theme or skin)
– Labels (internationalization)
– Adding or removing components

Spring 2008 6.831 User Interface Design and Implementation 5

Here are the two key reasons why we like automatic
layout – and these two reasons generalize to other
forms of declarative UI as well.

First, it makes programming easier. The code that
sets up layout managers is usually much simpler than
procedural code that does the same thing.

Second, the resulting layout can respond to change
more readily. Because it is generated automatically,
it can be regenerated any time changes occur that
might affect it. One obvious example of this kind of
change is resizing the window, which increases or
decreases the space available to the layout. You could
handle window resizing with procedural code as well,
of course, but the difficulty of writing this code
means that programmers generally don’t. (That’s

why many Windows dialog boxes, which are often
laid out using absolute coordinates in a GUI builder,
refuse to be resized! A serious restriction of user
control and freedom, particularly if the dialog box
contains a list or file chooser that would be easier to
use if it were larger.)

Automatic layout can also automatically adapt to font
size changes, different widget sets (e.g., buttons of
different size, shape, or decoration), and different
labels (which often occur when you translate an
interface to another language, e.g. English to
German). These kinds of changes tend to happen as
the application is moved from one platform to
another, rather than dynamically while the program
is running; but it’s helpful if the programmer doesn’t
have to worry about them.

Another dynamic change that automatic layout can
deal with is the appearance or disappearance of
components -- if the user is allowed to add or remove
buttons from a toolbar, for example, or if new
textboxes can be added or removed from a search
query.

Layout Manager Approach

• Layout manager performs automatic layout of
a container’s children
– 1D (BoxLayout, FlowLayout, BorderLayout)
– 2D (GridLayout, GridBagLayout, TableLayout)

• Advantages
– Captures most common kinds of layout

relationships in reusable, declarative form
• Disadvantages

– Can only relate siblings in component hierarchy

Spring 2008 6.831 User Interface Design and Implementation 6

Let’s talk specifically about the layout-manager
approach used in Java, which evolved from earlier UI
toolkits like Motif and Tcl/Tk. A layout manager is
attached to a container, and it computes the
positions and sizes of that container’s children. There
are two basic kinds of layout managers: one-
dimensional and two-dimensional.

One-dimensional layouts enforce only one direction
of alignment between the components; for example,
BoxLayout aligns components along a line either
horizontally or vertically. BorderLayout is also one-
dimensional: it can align components along any edge
of the container, but the components on different
edges aren’t aligned with each other at all.

Two-dimensional layouts can enforce alignment in
two directions, so that components are lined up in
rows and columns. 2D layouts are generally more
complicated to specify (totally GridBag!), but we’ll
see in the Graphic Design lecture that they’re really
essential for many dialog box layouts, in which you
want to align captions and fields both horizontally

and vertically at the same time.

Layout managers are a great tool because they
capture the most common kinds of layout
relationships as reusable objects. But a single layout
manager can make only local decisions: that is, it
computes the layout of only one container’s children,
based on the space available to the container. So
they can only enforce relationships between siblings
in the component hierarchy. For example, if you
want all the buttons in your layout to be the same
size, a layout manager can only enforce that if the
buttons all belong to the same parent. That’s a
difference from the more general constraint system
approach to layout that we’ll see later in this lecture.
Constraints can be global, cutting across the
component hierarchy to relate different components
at different levels.

Using Nested Panels for Layout

Spring 2008 6.831 User Interface Design and Implementation 7

Another common trick in layout is to introduce new
containers (divs in HTML, JPanels in Java) in the
component hierarchy, just for the sake of layout. This
makes it possible to use one-dimensional layout
managers more heavily in your layout. Suppose this
example is Swing. A BorderLayout might be used at
the top level to arrange the three topmost panels
(toolbar at top, palette along the left side, and main
panel in the center), with BoxLayouts to layout each
of those panels in the appropriate direction.

This doesn’t eliminate the need for two-dimensional
layout managers, of course. Because a layout
manager can only relate one container’s children, you
wouldn’t be able enforce simultaneous alignments
between captions and fields, for example. Using
nested panels with one-dimensional layouts would
force you to put them into separate containers.

Basic Layout Propagation Algorithm

computePreferredSize(Container parent)
for each child in parent,

computePreferredSize(child)
compute parent’s preferred size from children

e.g., horizontal layout,
(prefwidth,prefheight) = (sum(children prefwidth),

max(children prefheight)

layout(Container parent) requires: parent’s size already set
apply layout constraints to allocate space for each child

child.(width,height) = (parent.width / #children, parent.height)
set positions of children

child[i].(x,y) = (child[i-1].x+child[i-1].width, 0)
for each child in parent,

layout(child)

Spring 2008 6.831 User Interface Design and Implementation 8

Since the component hierarchy usually has multiple
layout managers in it (one for each container), these
managers interact by a layout propagation algorithm
to determine the overall layout of the hierarchy.

Layout propagation has two phases.

First, the size requirements (preferred sizes) of each
container are calculated by a bottom-up pass over
the component hierarchy. The leaves of the
hierarchy – like labels, buttons, and textboxes –
determine their preferred sizes first, by calculating
how large a rectangle they need to display to display
their text label and surrounding whitespace or
decorations. Then each container’s layout manager
computes its size requirement by combining the
desired sizes of its children. The preferred sizes of
components are used for two things: (1) to determine
an initial size for the entire window, which is what
Java’s pack() method does; and (2) to allow some
components to be fixed to their natural size, rather
than trying to expand them or shrink them, and
adjust other parts of the layout accordingly.

Once the size of the entire window has been
established (either by computing its preferred size, or
when the user manually sets it by resizing), the actual
layout process occurs top-down. For each container
in the hierarchy, the layout manager takes the
container’s assigned size (as dictated by its own
parent’s layout manager), applies the layout rules to
allocate space for each child, and sets the positions
and sizes of the children appropriately. Then it
recursively tells each child to compute its layout.

How Child Fills Its Allocated Space

Spring 2008 6.831 User Interface Design and Implementation 9

OK

space allocated to child

child’s actual size & position

Anchoring
OK

OK

northwest centered

Expanding

OK

Padding

OK

Let’s talk about a few key concepts in layout
managers. First, depending on the layout manager,
the space allocated to a child by its container’s layout
manager is not always the same as the size of the
child. For example, in GridBagLayout, you have to
explicitly say that a component should fill its space
allocation, in either the x or y direction or both (also
called expanding in other layout managers).

Some layout managers allow some of the space
allocation to be used for a margin around the
component, which is usually called padding. The
margin is added to the child’s preferred size during
the bottom-up size requirements pass, but then
subtracted from the available space allocation during
the top-down layout pass.

When a child doesn’t fill its allocated space, most
layout managers let you decide how you want the
component to be anchored (or aligned) in the space
– along a boundary, in a corner, or centering in one or
both directions. In a sense, expanding is just
anchoring to all four corners of the available space.

Since the boundaries aren’t always visible – the
button shown here has a clear border around it, but
text labels usually don’t – you might find this
distinction between the space allocation and the
component confusing. For example, suppose you
want to left-justify a text label within the allocated
space. You can do it two ways: (1) by telling the label
itself to display left-justified with respect to its own
rectangle, or (2) by telling the layout manager to
anchor the label to the left side of its space
allocation. But method #1 works only if the label is
expanded to fill its space allocation, and method #2
works only if the label is not expanded. So subtle
bugs can result.

How Child Allocations Grow and Shrink

Spring 2008 6.831 User Interface Design and Implementation 10

Label Text box Label

strut: invisible, fixed-size
component used for adding
whitespace between child
allocations

some children
are fixed-size

glue: invisible, growable
component used for
right-justification

other children grow & shrink
with available space in parent

Now let’s look at how space allocations typically
interact. During the top-down phase of the layout
process, the container’s size is passed down from
above, so the layout manager has to do the best it
can with the space provided to it. This space may be
larger or smaller than the layout’s preferred size. So
layout managers usually let you specify which of the
children are allowed to grow or shrink in response,
and which should be fixed at their preferred size. If
more than one child is allowed to take up the slack,
the layout manager has rules (either built in or user-
specified) for what fraction of the excess space
should be given to each resizable child.

In Java, growing and shrinking is constrained by two
other properties of components: minimum size and
maximum size. So one way to keep a component
from growing or shrinking is to ensure that its
minimum size and maximum size are always identical
to its preferred size. But layout managers often have
a way to specify it explicitly, as well.

Struts and glue are two handy idioms for inserting
whitespace (empty space) into an automatic layout.
A strut is a fixed-size invisible component; it’s used
for margins and gaps between components. Glue is

an invisible component that can grow and shrink with
available space. It’s often used to push components
over to the right (or bottom) of a layout.

Sometimes the layout manager itself allows you to
specify the whitespace directly in its rules, making
struts and glue unnecessary. For example,
TableLayout lets you have empty rows or columns of
fixed or varying size. But BoxLayout doesn’t, so you
have to use struts and glue.

Java has factory methods for struts and glue in the
Box class, but even if struts or glue weren’t available
in the toolkit, you could create them easily. Just
make a component that draws nothing and set its
sizes (minimum, preferred, maximum) appropriately.

HTML and CSS Layout

• Left-to-right, wrapping flow is the default
Words in a paragraph (like Swing’s FlowLayout)

• Absolute positioning in parent coordinate
system

#B {
position: absolute;
left: 20px;
width: 50%;
bottom: 5em;

}

• 2D table layout
<table>, <tr>, <td> (like ClearThought’s

TableLayout)

Spring 2008 6.831 User Interface Design and Implementation 11

A

B

CSS layout offers three main layout strategies. The
first is the default, left-to-right, wrapping flow typical
of web pages. This is what Swing’s FlowLayout also
does.

More useful for UI design is absolute positioning,
which allows a component’s coordinates to specified
either explicitly (in pixels relative to the parent’s
coordinate system) or relatively (as percentages of
the parent). For example, setting a component’s left
to 50% would put it halfway across its parent’s
bounding box. Absolute positioning can constrain
any two of the coordinates of a component: left,
right, and width. (If it specifies all three, then CSS
ignores one of them.)

Finally, HTML offers a table layout, which is flexible
enough to handle most 2D alignments you’d want.
The easiest way to use it is to use the <table>
element and its family of related elements (<tr> for
rows, and <td> for cells within a row).

Constraints

• Constraint is a relationship among variables
that is automatically maintained by system

• Constraint propagation: When a variable changes,
other variables are automatically changed to satisfy
constraint

Spring 2008 6.831 User Interface Design and Implementation 12

Since layout managers have limitations, let’s look at a
more general form of declarative UI, that can be used
not only for layout but for other purposes as well:
constraints.

A constraint is a relationship among variables. The
programmer specifies the relationship, and then the
system tries to automatically satisfy it. Whenever
one variable in the constraint changes, the system
tries to adjust variables so that the constraint
continues to be true. Constraints are rarely used in
isolation; instead, the system has a collection of
constraints that it’s trying to satisfy, and a constraint
propagation algorithm satisfies the constraints when
a variable changes.

In a sense, layout managers are a limited form of
constraint system. Each layout manager represents a
set of relationships among the positions and sizes of
the children of a single container; and layout
propagation finds a solution that satisfies these
relationships.

Using Constraints for Layout

Spring 2008 6.831 User Interface Design and Implementation 13

Label1 Textbox Label2

label1.left = 5
label1.width = textwidth(label1.text, label1.font)
label1.right = textbox.left
label1.left + label1.width = label1.right

textbox.width >= parent.width / 2
textbox.right <= label2.left

label2.right = parent.width

Here’s an example of some constraint equations for
layout. This is same layout we showed a couple of
slides ago, but notice that we didn’t need struts or
glue here; constraint equations can do the job
instead.

This simple example reveals some of the important
issues about constraint systems. One issue is
whether the constraint system is one-way or
multiway. One-way constraint systems are like
spreadsheets – you can think of every variable like a
spreadsheet cell with a formula in it calculating its
value in terms of other variables. One-way
constraints must be written in the form
X=f(X1,X2,X3,…). Whenever one of the Xi’s changes,
the value of X is recalculated. (In practice, this is
often done lazily – i.e., the value of X isn’t
recalculated until it’s actually needed.)

Multiway constraints are more like systems of
equations -- you could write each one as
f(X1,X2,X3,…) = 0. The programmer doesn’t identify
one variable as the output of the constraint – instead,
the system can adjust any variable (or more than one
variable) in the equation to make the constraint

become true. Multiway constraint systems offer
more declarative power than one-way systems, but
the constraint propagation algorithms are far more
complex to implement.

One-way constraint systems must worry about
cycles: if variable X is computed from variable Y, but
variable Y must be computed from variable X, how do
you compute it? Some systems simply disallow cycles
(spreadsheets consider them errors, for example).
Others break the cycle by reusing the old (or default)
value for one of the variables; so you’ll compute
variable Y using X’s old value, then compute a new
value for X using Y.

Conflicting constraints are another problem –
causing the constraint system to have no solution.
Conflicts can be resolved by constraint hierarchies,
in which each constraint equation belongs to a
certain priority level. Constraints on higher priority
levels take precedence over lower ones.

Inequalities (such as textbox.right <= label2.left) are
often useful in specifying layout constraints, but
require more expensive constraint satisfaction
algorithms.

Using Constraints for Behavior

• Input
– checker.(x,y) = mouse.(x,y)

if mouse.button1 && mouse.(x,y) in checker
• Output

– checker.dropShadow.visible = mouse.button1 &&
mouse.(x,y) in checker

• Interactions between components
– deleteButton.enabled = (textbox.selection != null)

• Connecting view to model
– checker.x = board.find(checker).column * 50

Spring 2008 6.831 User Interface Design and Implementation 14

Constraints can be used for more general purposes
than just layout. Here are a few.

Some forms of input can be handled by constraints, if
you represent the state of the input device as
variables in constraint equations. For example, to
drag a checker around on a checkerboard, you
constrain its position to the position of the mouse
pointer.

Constraints can be very useful for keeping user
interface components consistent with each other.
For example, a Delete toolbar button and a Delete
command on the Edit menu should only be enabled if
something is actually selected. Constraints can make
this easy to state.

The connection between a view and a model is often
easy to describe with constraints, too. (But notice
the conflicting constraints in this example! checker.x
is defined both by the dragging constraint and by the
model constraint. Either you have to mix both
constraints in the same expression – e.g., if dragging

then use the dragging constraint, else use the model
constraint – or you have to specify priorities to tell
the system which constraint should win.)

The alternative to using constraints in all these cases
is writing procedural code – typically an event
handler that fires when one of the dependent
variables changes (like mouseMoved for the mouse
position, or selectionChanged for the textbox
selection, or pieceMoved for the checker position),
and then computes the output variable correctly in
response. The idea of constraints is to make this
code declarative instead, so that the system takes
care of listening for changes and computing the
response.

Constraints Are Declarative UI

Spring 2008 6.831 User Interface Design and Implementation 15

-scrollpane.child.y

scrollpane.child.height – scrollpane.height

scrollbar.thumb.y

scrollbar.track.height – scrollbar.thumb.height

=

This example shows how powerful constraint
specification can be. It shows how a scrollbar’s
thumb position is related to the position of the pane
that it’s scrolling. (The pane’s position is relative to
the coordinate system of the scroll window, which is
why it’s negative.) Not only is it far more compact
than procedural code would be, but it’s multiway.
You can solve this equation for different variables, to
compute the position of the scrollpane as a function
of the thumb position (in order to respond to the
user dragging the thumb), or to compute the thumb
position as a function of the pane position (e.g. if the
user scrolls the pane with arrow keys or jumps
directly to a bookmark). So both remain consistent.

Alas, constraint-based user interfaces are still an area
of research, not much practice. Some research UI
toolkits have incorporated constraints (Amulet,
Artkit, Subarctic, among others), and a few research
constraint solvers exist that you can plug in to
existing toolkits (e.g., Cassowary). But you won’t find
constraint systems in most commercial user interface
toolkits, except in limited ways. The SpringLayout
layout manager is the closest thing to a constraint
system you can find in standard Java (it suffers from
the limitations of all layout managers).

But you can still think about your user interface in
terms of constraints, and document your code that
way. You’ll find it’s easier to generate procedural

code once you’ve clearly stated what you want
(declaratively). If you state a constraint equation,
then you know which events you have to listen for
(any changes to the variables in your equation), and
you know what those event handlers should do (solve
for the other variables in the equation). Writing
procedural code for the scrollpane is much easier if
you’ve already written the constraint relationship.

Summary

• Automatic layout adapts to different platforms
and UI changes

• Layout managers are 1D or 2D
• Layout propagation algorithm
• Constraints are useful for more than just

layout

Spring 2008 6.831 User Interface Design and Implementation 16

