
Spring 2008 6.831 User Interface Design and Implementation 1

Lecture 14: Errors

UI Hall of Fame or Shame?

Spring 2008 6.831 User Interface Design and Implementation 2

Suggested by Eitan Glinert

From Eitan Glinert:

“On the XBox 360 controller, there is a large
button in the middle which stops the game and
takes the user to the high level system control panel
for the console. The idea is to have a consistent
button that is easy to find that will always allow the
user to get back to the familiar top level system
control interface.”

Let’s discuss this controller’s:

- simplicity

- efficiency

- error prevention

Today’s Topics

• Human error
• Error prevention
• Error messages

Spring 2008 6.831 User Interface Design and Implementation 3

Today’s lecture is about error in user interfaces.
First we’ll look at some definitions and principles
from cognitive science, which will help us
understand why and how people make errors. Then
we’ll talk about how to apply those principles to
user interfaces to prevent errors, at least as much
as possible. Finally, since not all errors can be
prevented, we’ll discuss how to write good error
messages.

Error Types

• Slips and lapses
– Failure to correctly execute a procedure
– Slip is a failure of execution, lapse is a failure of

memory
– Typically found in skilled behavior

• Mistakes
– Using wrong procedure for the goal
– Typically found in rule-based behavior or problem-

solving behavior

Spring 2008 6.831 User Interface Design and Implementation 4

Errors can be classified into slips and lapses and
mistakes according to how they occur.

Slips and lapses are found in skilled behavior –
execution of procedures that the user has already
learned. For example, pressing an onscreen button
– moving the mouse pointer over it, pressing the
mouse button, releasing the mouse button – is a
skill-based procedure for virtually any computer
user. An error in executing this procedure, like
clicking before the mouse pointer is over the
button, is a slip. This is just a low-level example,
of course. We have many higher-level, learned
procedures too – attaching a file to an email,
submitting a search to Google, drawing a rectangle
in a paint program, etc. An error in execution of
any learned procedure would be a slip.

Slips are distinguished from lapses by the source of
the failure. A slip is a failure of execution or
control – for example, substituting one action for
another one in the procedure. A lapse is a failure of
memory – for example, forgetting the overall goal,
or forgetting where you are in the procedure.

A mistake, on the other hand, is an error made in
planning or rule application. One framework for
classifying cognitive behavior divides behavior into
skill-based (learned procedures), rule-based
(application of learned if-then rules), and
knowledge-based (problem solving, logic,
experimentation, etc.) Mistakes are errors in rule-
based or knowlege-based behavior; e.g., applying a
rule in a situation where it shouldn’t apply, or using
faulty reasoning. We won’t have much to say
about mistakes in this course, but much research in

human error is concerned with this level – e.g.,
suboptimal or even irrational heuristics that people
use for decision making and planning.

(James Reason, Human Error, Cambridge
University Press, 1990)

Slips

• Capture
– Leave your house and find yourself walking to

school instead of where you meant to go
– vi :w command (to save the file) vs. :wq command

(to save and quit)
• Description

– Pouring orange juice into your cereal
– Putting the wrong lid on a bowl
– Throwing shirt into toilet instead of hamper
– Choosing Kendall Square instead of Kenmore

Square

Spring 2008 6.831 User Interface Design and Implementation 5

Here are some examples of common slips. A
capture slip occurs when a person starts executing
one sequence of actions, but then veers off into
another (usually more familiar) sequence that
happened to start the same way. A good mental
picture for this is that you’ve developed a mental
groove from executing the same sequence of
actions repeatedly, and this groove tends to capture
other sequences that start the same way. In the text
editor vi, it’s common to quit the program by
issuing the command “:wq”, which saves the file
(w) and quits (q). If a user intends just to save the
file (:w) but accidentally quits as well (:wq), then
they’ve committed a capture error.

A description slip occurs when two actions are
very similar. The user intends to do one action, but
accidentally substitutes the other. A classic
example of a description error is reaching into the
refrigerator for a carton of milk, but instead picking
up a carton of orange juice and pouring it into your
cereal. The actions for pouring milk in cereal and
pouring juice in a glass are nearly identical – open
fridge, pick up half-gallon carton, open it, pour–
but the user’s mental description of the action to
execute has substituted the orange juice for the
milk.

Lapses

• Loss of intention
– Walking to another room and forgetting why you

went there
• Omissions due to interruption

– Getting coat to go out, then interrupted by a phone
call; then go out without your coat

• Omissions due to already-satisfied goal
– Walking away from an ATM without your card
– Walking away from a copier without your originals

Spring 2008 6.831 User Interface Design and Implementation 6

Lapses are due to failures of memory, particularly
the short-term memory that is managing the
execution of a procedure. A loss of intention lapse
happens when you start executing a procedure and
forget your goal in the interim. For example, when
you walk to another room to fetch something, and
by the time you get there, you no longer remember
what you wanted.

Lapses can also happen because of interruptions,
which disrupt short-term memory and make you
lose track of your place in the interrupted
procedure.

Another common lapse happens when your goal is
actually satisfied in the middle of the procedure.
The remaining steps are cleanup or shutdown
subtasks, which you may forget because you’ve
already discharged your original intention. For
example, if an ATM machine gives you the cash
first, you may walk away from it without taking
your card, because your original goal was getting
cash. This is a clear example of an error that good
user interface design can prevent.

Mode Error

• Modes: states in which actions have different
meanings
– Vi’s insert mode vs. command mode
– Caps Lock
– Drawing palette

Spring 2008 6.831 User Interface Design and Implementation 7

Another kind of error, clearly due to user interface,
is a mode error. Modes are states in which the same
action has different meanings. For example, when
Caps Lock mode is enabled on a keyboard, the
letter keys produce uppercase letters. The text
editor vi is famous for its modes: in insert mode,
letter keys are inserted into your text file, while in
command mode (the default), the letter keys invoke
editing commands. In the first lecture, we talked
about a mode error in Gimp: accidentally changing
a menu shortcut because your mouse is hovering
over it.

Mode errors occur when the user tries to invoke an
action that doesn’t have the desired effect in the
current mode. For example, if the user means to
type lowercase letters but doesn’t notice that Caps
Lock is enabled, then a mode error occurs.

Mode errors are generally slips, an error in the
execution of a learned procedure, caused by failing
to correctly evaluate the state of the interface.

Common Features of Human Error

• Inattention or inappropriate attention
– Causes slips and lapses, but not mistakes

• “Strong-but-wrong” effect
– Similarity
– High frequency

Spring 2008 6.831 User Interface Design and Implementation 8

The slips and lapses we’ve discussed have a few
features in common. First, the root cause of these
errors is often inattention. Since slips and lapses
occur in skilled behavior, execution of already
well-learned procedures, they are generally
associated with insufficient attention to the
execution of the procedure, or omission or
distraction of attention at a key moment.

Second, the particular erroneous behavior chosen is
often selected because of its high similarity to the
correct behavior (as in capture and description
slips), or of its high frequency relative to the
correct behavior (as in capture slips). Very
common, or very similar, patterns are strongly
available for retrieval from human memory. So
errors are often strong-but-wrong behavior.

Avoiding Capture and Description Slips

• Avoid habitual action sequences with
identical prefixes

• Avoid actions with very similar descriptions
• Keep dangerous commands away from

common ones

Spring 2008 6.831 User Interface Design and Implementation 9

Let’s discuss how to prevent errors of these sorts.
In a computer interface, you can deal with capture
errors by avoiding very common action sequences
that have identical prefixes.

Description errors can be fought off by applying
the converse of the Consistency heuristic: different
things should look and act different, so that it will
be harder to make description errors between them.
Avoid actions with very similar descriptions, like
long rows of identical buttons.

You can also reduce description errors by making
sure that dangerous functions (hard to recover from
if invoked accidentally) are well-separated from
frequently-used commands. Outlook 2003 makes
this mistake: when you right-click on an email
attachment, you get a menu that mixes common
commands (Open, Save As) with less common and
less recoverable ones – if you print that big file by
mistake, you can’t get the paper back. And if you
Remove the attachment, it’s even worse – undo
won’t bring it back! (Thanks to Amir Karger for
this example.)

Avoiding Mode Errors

• Eliminate modes
• Increase visibility of mode
• Spring-loaded or temporary modes
• Disjoint action sets in different modes

Spring 2008 6.831 User Interface Design and Implementation 10

There are many ways to avoid or mitigate mode
errors. Eliminating the modes entirely is best,
although not always possible. Modes do have some
uses – they make command sets smaller, for
example. When modes are necessary, it’s essential
to make the mode visible. But visibility is a much
harder problem for mode status than it is for
affordances. When mode errors occur, the user isn’t
actively looking for the mode, like they might
actively look for a control. As a result, mode status
indicators must be visible in the user’s locus of
attention. That’s why the Caps Lock light, which
displays the status of the Caps Lock mode on a
keyboard, doesn’t really work.

Other solutions are spring-loaded or temporary
modes. With a spring-loaded mode, the user has to
do something active to stay in the alternate mode,
essentially eliminating the chance that they’ll forget
what mode they’re in. The Shift key is a spring-
loaded version of the uppercase mode. Drag-and-
drop is another spring-loaded mode; you’re only
dragging as long as you hold down the mouse
button. Temporary modes are similarly short-term.
For example, in many graphics programs, when
you select a drawing object like a rectangle or line
from the palette, that drawing mode is active only
for one mouse gesture. Once you’ve drawn one
rectangle, the mode automatically reverts to
ordinary pointer selection.

Finally, you can also mitigate the effects of mode
errors by designing action sets so that no two
modes share any actions. Mode errors may still
occur, when the user invokes an action in the
wrong mode, but the action can simply be ignored
rather than triggering any undesired effect.

Avoiding Lapses

• Keep procedures short
– Provide dialog closure

• Minimize interruptions
• Use forcing functions

– In automatic transmission, you must hold down
the brake in order to shift out of Park

– Must take your ATM card out of the machine
before you get your money

Spring 2008 6.831 User Interface Design and Implementation 11

One way to avoid lapses in procedure execution is
to keep procedures short, so that users have fewer
steps to potentially forget. (Striving for simplicity
often does this as a side-effect.) It’s also helpful to
put more obvious structure on the procedure, a
technique called dialog closure (Shneiderman,
Designing the User Interface). Action sequences
should be designed with a beginning, a middle, and
an end. For example, think about drag and drop:

At the beginning, you press the mouse button and
see the object picked up with your cursor.

In the middle, you move the object across the
screen towards your target, getting feedback that
it’s coming along.

At the end, you release the mouse button, and see
the effects of the drop.

The key feature of closure is the feedback you get
at the end of the operation. This assurance that the
operation completed provides the user with a sense
of accomplishment, some relief, and an opportunity
to clear their working memory of the details of the
task in preparation for another.

Some lapses can be addressed by designing forcing
functions into the interface. A forcing function is a
feature that forces one step to be performed before
another step. For example, many cash machines
require you to take your card back before they
dispense any cash to you. Forcing functions should
be used sparingly, since they reduce user control
and freedom, but when the forced step would be a
costly lapse (like leaving your ATM card behind),
then a forcing function may be worth it.

Other Rules for Error Prevention

• Disable illegal commands
• Use menus & forms, not command languages
• All needed information should be visible
• Use combo boxes, not textboxes

– But don’t go overboard…

• Protect user’s work

Spring 2008 6.831 User Interface Design and Implementation 12

Source: Interface Hall of Shame

Here are some other ways to prevent errors.

If a command is illegal in the current state of the
interface – e.g., Copy is impossible if nothing is
selected – then the command should be disabled
(“grayed out”) so that it simply can’t be selected in
the first place.

One way to prevent errors is to allow users to select
rather type. Misspellings then become impossible.
This attitude can be taken to an extreme, however,
as shown in this example.

One reason why selection is better is that it reduces
the user’s memory load. Command languages
demand lots of knowledge in the head, while menus
rely on knowledge in the world.

Any information needed by a task should be visible
or otherwise accessible in the interface for that task.
The interface shouldn’t depend on users to
remember the email address they want to send mail
to, or the product code for the product they want to
buy. Relying too heavily on the user’s short-term
memory will lead to errors.

Protect users’ work is an important value
judgment: errors that lose or destroy the user’s
work are the worst kind. It’s worth substantial
engineering to prevent this from happening –
implementing automatic save, undo, file version
histories, etc.

Confirmation Dialogs

Spring 2008 6.831 User Interface Design and Implementation 13

An unfortunately common strategy for error
prevention is the confirmation dialog, or “Are you
sure?” dialog. It’s not a good approach, and should
be used only sparingly, for several reasons:

•Confirmation dialogs can substantially reduce the
efficiency of the interface. In the example above, a
confirmation dialog pops up whenever the user
deletes something, forcing the user to make two
button presses for every delete, instead of just one.
Frequent commands should avoid confirmations.

•If a confirmation dialog is frequently seen – for
example, every time the Delete button is pressed –
then the expert users will learn to expect it, and will
start to include it in their habitual procedure. In
other words, to delete something, the user will learn
to push Delete and then OK, without reading or
even thinking about the confirmation dialog! The
dialog has then completely lost its effectiveness,
serving only to slow down the interface without
actually preventing any errors.

In general, reversibility (i.e. undo) is a far better
solution than confirmation. Even a web interface
can provide at least single-level undo (undoing the
last operation). Operations that are very hard to
reverse may deserve confirmation, however. For
example, quitting an application with unsaved work
is hard to undo – but a well-designed application
could make even this undoable, using automatic
save or keeping unsaved drafts in a special
directory.

Writing Error Message Dialogs

• Best error message is none at all
– Errors should be prevented
– Be more flexible
– Nonsense entries can often be ignored

Spring 2008 6.831 User Interface Design and Implementation 14

Finally, let’s talk about how to write error
messages. But before you try to write an error
message, stop and ask yourself whether it’s really
necessary. An error message is evidence of a
limitation or lack of flexibility on the part of the
system – a failure to prevent or absorb an error
without complaint. So try to eliminate the error
first.

Some errors simply aren’t worth a message. For
example, suppose the user types “abc” into the font
size combo box. Don’t pop up a message
complaining about an “invalid entry”. Just ignore it
and immediately replace it with the current font
size. (Why is this enough feedback, for a font size
combo box?) Similarly, if the user drags a
scrollbar thumb too far, the scrollbar doesn’t pop
up an error message (“Too far! Too far!”). It
simply stops. If the effect of the erroneous action is
easily visible, as in these cases, then you don’t have
to beat the user over the head with a superfluous
error message.

Be Precise and Comprehensible

• Be precise
– “File missing or wrong format”
– “File can’t be parsed”
– “Line too long”
– “Name contains bad characters”

• Restate user’s input
– Not “Cannot open file”, but “Cannot open file named

paper.doc”

• Speak the user’s language
– Not “FileNotFoundException”
– Hide technical details (like a stack trace) until requested

Spring 2008 6.831 User Interface Design and Implementation 15

Assuming you can’t design the error message out
of the system, here are some guidelines for writing
good ones.

First, be precise. Don’t lump together multiple
error conditions into a single all-purpose message.
Find out what’s really wrong, and display a
targeted message. If the error is due to limitations
of your system, like sizes or allowed characters,
then be specific about what the limitations are, so
that the user can adapt. (Then ask yourself why
you have those limitations!)

It often helps to restate the user’s input, so that
they can relate what they did to the error message,
and perhaps even detect the problem immediately
(“oh, I didn’t mean paper.doc...”)

In error messages, it’s particularly important to
speak the user’s language, and avoid letting
technical terms or details like exceptions and stack
traces leak through.

Suggest Reasons and Solutions

• Give constructive help
– why error occurred and how to fix it

Spring 2008 6.831 User Interface Design and Implementation 16

Next, your message should be constructive, not
just reporting the error but helping the user correct
it. Suggest possible reasons for the error and offer
ways to correct them – ideally in the error message
dialog itself. Here’s a good example from Adobe
Acrobat.

Be Polite

• Be polite and nonblaming
• Avoid loaded words

– “fatal”
– “illegal”
– “aborted”

Spring 2008 6.831 User Interface Design and Implementation 17

Source Interface Hall of Shame

Finally, be polite. The message should be worded
to take as much blame as possible away from the
user and heap the blame instead on the system.
Save the user’s face; don’t worry about the
computer’s. The computer doesn’t feel it, and in
many cases it is the interface’s fault anyway for not
finding a way to prevent the error in the first place.

Many words that are unfortunately common in
technical error messages have emotionally-charged
meanings in ordinary language; examples include
“fatal”, “illegal”, “abort”, etc. Avoid them. Use
neutral language.

The tooltip shown at the bottom isn’t strictly an
error message, but it actually appeared in a
production version of AutoCad! As the story goes,
it was inserted by a programmer as a joke, but
somehow never removed before release. Even as a
joke, it demonstrates a lack of respect for the
intelligence of the human being on the other side of
the screen. That attitude is exactly wrong for user
interface design.

Summary

• Errors include slips, lapses, mistakes
• Human error is characterized by inattention,

similarity, frequency
• Prevent errors as much as possible
• Write good error messages otherwise

Spring 2008 6.831 User Interface Design and Implementation 18

