
Spring 2008 6.831 User Interface Design and Implementation 1

Lecture 12: User Control & Freedom

UI Hall of Fame or Shame?

Spring 2008 6.831 User Interface Design and Implementation 2

This is the Windows XP Search Companion. It
appears when you press the Search button on a
Windows Explorer toolbar, and is primarily
intended for finding files on your hard disk. An
interesting feature of this interface is that, rather
than giving a textbox for search keywords right
away, it first asks you to specify what kind of file
you’re looking for.

Let’s think about:

- learnability (what overall design pattern is being
used here?)

- user control & freedom

- efficiency

- error prevention – can you anticipate an error in
the second picture? (Hint: find two buttons with
identical labels)

UI Hall of Fame or Shame?

Spring 2008 6.831 User Interface Design and Implementation 3

Suggested by Mariela Buchin

Now here’s the Start menu in Vista, which is
similar to the Start menu in Windows XP and other
desktops, but it adds an interesting new feature: a
search box that incrementally searches through
programs, web favorites, files, and emails.

Think about:

- efficiency

- consistency

- visibility

Quicksilver for Mac OS offers a similar feature
(although Quicksilver is much different in the
details; we may look at it in a future Hall of Fame
or Shame).

Today’s Topics

• User control over the dialog
• User control over data
• Undo

Spring 2008 6.831 User Interface Design and Implementation 4

Today’s lecture is about user control and freedom
(a term coined by Jakob Nielsen), which is the idea
that in the give and take between the user and the
system, the user should have ultimate control.
We’ve touched on this idea several times in
previous lectures. It’s one of the reasons we use
event-driven programming in graphical user
interfaces, for example, rather than synchronous
prompt-and-response. But user control has design
implications beyond that low-level detail.

We’ll focus on two kinds of control in this lecture:
control over the dialog (who says what when), and
control over the data (e.g., what the user can enter,
and whether it can be changed later). A common
design pattern for increasing user control is undo.
We’ll look at undo in detail, and see that it’s more
complicated than it appears.

Why the User Should Be In Control

• Learning by exploring
• Dealing with errors
• User is sentient, computer is not

Spring 2008 6.831 User Interface Design and Implementation 5

Good interfaces are explorable. One way users
learn is by exploring: poking around an interface,
trying things out. An interface should encourage
this kind of exploration, not only by making things
more visible, but also by making the consequences
of errors less severe. For example, users navigating
around a 3D world or a complex web site can easily
get lost; give them an easy, obvious way to get
back to some “home”, or default view. Users
should be able to explore the interface without fear
of being trapped in a corner.

Clearly Marked Exits

• Long operations should be cancelable

• All dialogs should have a cancel button

Spring 2008 6.831 User Interface Design and Implementation 6

Source: Interface Hall of Shame

The simplest kind of user control is a veto – the
ability to cancel an operation, even if it was
something they asked for. Users should not be
trapped by the interface. Long operations should
not only have a progress bar, but a Cancel button
too. Likewise, every dialog box should have a
Cancel button. Where is it in this CuteFTP dialog
box on the bottom? As a user of this dialog, would
you feel like you’re in control?

Wizard vs. Center Stage: Who’s in Control?

Spring 2008 6.831 User Interface Design and Implementation 7

Wizard

Center Stage

Let’s look a little further at who controls the dialog
between the user and the system. (Here, dialog
means the general pattern of back-and-forth
communication between the user and the interface,
as if the user and the system are having a
conversation. A dialog box is a specific kind of
window, a design pattern used in a dialog. We
often say dialog as a shorthand for dialog box, but
hopefully the distinction will be obvious from
context.)

We’ll contrast two patterns. The wizard design
pattern is a familiar pattern for improving the
learnability of a complex interaction, by structuring
it as a step-by-step process, with each step in a
dialog. Wizards are the conventional pattern for

software installation. In a wizard, the system
controls the dialog – it dictates the steps, the
ordering of the steps, and what it asks for at each
step. Imagine a travel agent who’s asking you a
series of questions, and refuses to listen to what
you say if it’s not relevant to the question they
asked. That’s a wizard.

Contrast that with the center stage pattern, which
lays out data objects in the main section of the
window, and gives the user a set of tools for
operating on the objects. In this case, the user
controls the dialog, deciding which objects to select
and which tools to pick up.

Wizards clearly restrict the user’s freedom, but for
complex, infrequently-done tasks (like installation),
the tradeoff is often worth it. Note, however, that a
good wizard has two key features: a Back button
(for backing out of errors) and a Cancel button (for
vetoing the operation entirely). So even though the
wizard pattern puts the system in control of the
details, the user still has supervisory control.

Manual Overrides for Automatic Systems

Spring 2008 6.831 User Interface Design and Implementation 8

Source: www.findability.org

One of the main reasons we build software in the
first place is to automate a process, taking some
burden off the human users. But we can’t take
away control entirely. Users should be able to
manually override automation.

The familiar Find & Replace command is a simple
example of this. If Find & Replace were perfectly
automatable, then all we’d need is Replace All.
But the world isn’t that simple, and our documents
are full of exceptions or incompletely-specified
patterns, and there are plenty of cases where the
user needs manual control over replacement –
hence the Replace button.

Google Maps offers an example of a different kind
of control – starting with the output of an automatic
algorithm (the shortest route between two points)
and manually tweaking it (dragging the route
around). Systems that solve big or complex
optimization problems should offer the user the
opportunity to make these tweaks, since often there
are constraints or preferences that are difficult to
specify in advance, but can easily be seen when a

solution is presented.

Some HCI researchers (prominently, Austin
Henderson) argue that computer science in general,
and corporate system developers in particular, have
gone too far in trying to regularize the world,
building systems that demand coherence from their
users and their environment, expecting input that
fits into expected categories and rejecting all
others. For example, stating that every person has a
first name and a last name, or assuming that every
city belongs to only one country, or demanding a
single shipping address for an order, are claims
about the coherence of the world. But the real
world is fuzzy, full of exceptions and oddities, and
we should build pliant systems that can survive the
exceptions. A great example of how paper-based
systems are pliant is the marginal comment.
Here’s a card from an old-fashioned card catalog.
You can easily distinguish the coherent typewritten
data, which might fit neatly into a database system
nowadays, from the marginalia. Margins on paper
forms are often used by experienced workers to get
their jobs done when the form is inadequate. We
have a few design patterns for pliant user interfaces
– such as comment fields (though they appear very
rarely!), and tagging instead of rigid hierarchies –
but we don’t really know how to build systems that
are coherent enough for automation yet still pliant
enough for the real world. (Jon Udell, “Scribbling
in the Margins”, Infoworld,
http://www.infoworld.com/article/04/04/09/15OPst
rategic_1.html)

Never Ask Me Again

Spring 2008 6.831 User Interface Design and Implementation 9

Here’s an interesting problem related to who’s in
control of the dialog. Many interfaces interrupt
users with questions, like the dialog boxes shown
here. If the answer is always the same, it’s clearly
inefficient (and annoying) to keep asking the same
question repeatedly – so many of these dialogs
offer the option Never ask me again.

Good idea, and superficially seems to improve user
control, because it’s like a veto over all future
questions of the same type. But suppose later the
user wants to change their decision? Because the
system initiated this dialog, not the user, the user
has no idea how to return to the question. And the
system has promised never to ask it again! It’s a
Catch-22.

One patch to this problem can be seen in the
Firefox window on the right – a help message that
tells the user where to look to undo the decision.
But remember that just because the user has seen a
message doesn’t mean they’ve learned what it had
to say. It’s not clear that this really fixes the
problem, but I haven’t seen any better solutions.

User Control Over Data

• Data entered by the user should be editable
later
– Create, Read, Update, Delete

• No arbitrary limits on user-defined names

Spring 2008 6.831 User Interface Design and Implementation 10

So we’ve discussed user control over the dialog.
Let’s now consider user control over the data itself.

Editing is important. If the user is asked to provide
any kind of data – whether it’s the name of an
object, a list of email attachments, or the position of
a rectangle – the interface should provide a way to
go back and change what the user originally
entered – rename the object, add or remove
attachments, move around that rectangle some
more. Data that is initialized by the user but can
never again be touched will frustrate user control
and freedom.

Keep CRUD in mind – if you can Create an object
or data field, you should be able to Read, Update,
and Delete it, too.

Providing user control and freedom can have strong
effects on your backend model. You’ll have to
make sure data are mutable. If you built your
backend assuming that a user-provided piece of
data would never change once it had been created,

then you may have trouble building a good UI.
One way that can happen is if you try to use user-
provided data as a unique identifier in a database,
like the user’s name, or their email address, or their
phone number, or the title of a document. That’s
generally not a good practice, because if any other
object stores a reference to the identifier, then the
user won’t be able to edit it.

If an interface allows users to name things, then
users should be free to choose long, descriptive
names, with any characters or punctuation they
want. Artificial limits on length or content should
be avoided. DOS used to have a strong limit on
filenames, an 8 character name and a 3 character
extension, and a variety of punctuation characters
are forbidden from filenames. Echoes of these
limits persist in Windows even today.

Support Undo

• Desktop

• Web

• Revision history

Spring 2008 6.831 User Interface Design and Implementation 11

If Cancel is the most common answer for user
control over dialog, then Undo is the most common
answer to user control over data. Undo has been
around in desktop applications since the dark ages
of the first Macintosh, if not before. The first Mac
applications supported only single-level undo –
that is, you could undo the last command, but no
farther. This was largely due to memory
constraints, and modern desktop applications allow
unlimited undo (or so much that it makes no
difference given the current interface for Undo –
nobody is going to press Ctrl-Z 1000 times, after
all).

Undo is also gradually appearing in web
applications, like GMail. GMail’s interface (shown
here) only supports single undo. But other web
applications support much longer undo histories,
particularly apps designed for collaboration, like
wikis. In these apps, undo typically takes the form
of a revision history, rather than an undo command.

Forming a Mental Model of Undo

• Undo reverses the effect of an action
• But that leaves many questions:

– What stream of actions will be undone?
– How is the stream divided into undoable units?
– Which actions are undoable, and which are

skipped?
– How much of the previous state is actually

recovered by the undo?
– How far back in the stream can you undo?

Spring 2008 6.831 User Interface Design and Implementation 12

You may think it’s obvious what the Undo
command does: it reverses the effect of the user’s
last action. But it’s not as simple as that. Undo’s
behavior can be mysterious. Undo is an example of
a case where the system model is not well
communicated by the user interface. The actions
managed by Undo are not visible; there’s no
persistent, visual representation showing the next
action to be undone. (Not quite true: in well-
designed interfaces, the Undo menu command’s
label gives a hint, like “Undo Typing” or “Undo
Bold”. But it’s not prominent, so it doesn’t
particularly help a user form their mental model
from ordinary use.) If you ask users to predict what
effect Undo will have in some particular case, they
may have no idea.

Let’s look at some of the questions we should ask
when we’re designing an undo mechanism.

What stream of actions will be undone?

• Actions in this window (MS Office)
• Actions in this text widget (web browser)
• Just my actions, or everybody’s (multiuser

apps)
• Actions made by the computer

– MS Office AutoCorrect and AutoFormat are
undoable, even though user didn’t do them

Spring 2008 6.831 User Interface Design and Implementation 13

Undo reverses the last action made by the user, but
it’s not necessarily the last one in the global stream.
There is no global Undo in current GUI
environments. Each application, sometimes even
each widget, offers its own Undo command. A
particular Undo command will only affect the
action stream of the application or widget that it
controls – so it will undo the last action in that
application or widget’s stream, which isn’t
necessarily the last command the user issued to the
system as a whole.

Some applications use a separate action stream for
each window. Microsoft Office works this way, for
example. If you type something into Word
document A, then type something else into Word
document B, then switch back to A and invoke
Undo, then A’s insert will be undone – even though
B’s insert is the last one you actually performed.

Other applications treat each text widget as a
separate action stream. Web browsers behave this
way. Try visiting a form in a web browser, and
type something into two different fields. You’ll
find that Undo only affects the field with the
current keyboard focus, ignoring actions you made

on any other fields. Changes made in other kinds
of form widgets – drop-down menus or listboxes,
for example – aren’t added to any action stream.

Applications with multiple simultaneous users –
such as a shared network whiteboard, where
anybody can scribble on it – face the question of
whether Undo should affect only your own actions,
or everybody’s actions. Usually, the best answer to
this question is only your own actions, unless you
have some kind of floor control mechanism that
prevents people from working simultaneously
[Abowd & Dix, “Giving undo attention,”
Interacting with Computers, v4 n3, 1992].

How is the stream divided into units?

• Lexical level
– Mouse clicks, key presses, mouse moves
– Nobody does it at this level

• Syntactic level
– Commands and button presses

• Semantic level
– Changes to application data structures (e.g., the result of an

entire Format dialog)
– This is the normal level

• Text entry is aggregated into a single action
– But other editing commands (like Backspace) and newlines

interrupt the aggregation
• What about user-defined macros?

– Undo macro actions individually, or as a unit?

Spring 2008 6.831 User Interface Design and Implementation 14

Once you’ve decided which stream of actions to
undo, the next question is, how is the stream
divided into units? This is important because Undo
reverses the last unit action of the stream.

Dividing at the lexical level means low-level input
events, so Undo might reverse the very last
keyboard or mouse change. For example, if you
just did a drag-and-drop, invoking Undo might
undo your mouse button release, putting you back
into drag-and-drop mode and allowing you to drop
somewhere else. No user interface (that I know of)
implements lexical Undo in a systematic way; it’s
not clear how to get it right (since you’re not
holding the button down anymore!), and it’s
probably not what users want.

At the syntactic level, you would undo commands
or onscreen button presses. For menu items and
toolbar buttons, this is the right thing. But if you
just finished a dialog – say, using the Font dialog,
or selecting a Color – then this would undo the OK
button press, returning you into the dialog box.
Most applications don’t do it at this level either.

The semantic level is what most designers choose,
where Undo reverses the most recent change to the
backend model – whether it was caused by a simple
command, like Boldface, or a complicated dialog,
like Page Layout. That’s great for one kind of user
control and freedom, since it makes complex
changes just as easy to back out of as simple
changes. But what if you just completed a long

wizard dialog, only to discover that it didn’t do
what you wanted, and Undo only reverses the effect
of the entire dialog, instead of getting you back into
the wizard and letting you Back up? There are
tradeoffs in the decision to undo only at the
semantic level, but it’s the most common.

For undoing text, individual typed characters
should be aggregated somehow – otherwise, Undo
won’t be any faster than pressing Backspace. One
natural way to do this might be word boundaries;
but most text editors use edit commands and
newlines as boundaries.

In general, the action stream should be divided into
chunks from the user’s perspective. For example,
a user-defined macro is a chunk, so Undo should
treat the entire macro as a unit action.

Which actions are undoable?

• User’s action stream may include many
actions that are ignored by Undo
– Selection
– Keyboard focus
– Changing viewpoint (scrolling, zooming)
– Changing layout (opening palettes or sidebars,

adjusting window sizes)
– UI customization (adding buttons to toolbars)

• So which actions does Undo actually undo?
– Some applications (e.g. web browsers, IDEs) have

Undo/Redo for the editing stream, Back/Forward
for the viewpoint stream

Spring 2008 6.831 User Interface Design and Implementation 15

Many actions that affect visible program state may
be completely ignored by Undo. Typically these
actions affect the view, but don’t actually change
the backend model. Examples include selection,
keyboard focus, scrolling and zooming, window
management, and user interface customizations.

Since easy reversibility can be just as helpful for
view changes, some applications define new
commands for them, so they can reserve Undo for
reversing model changes. Web browsers are a fine
example: the Back button reverses a jump in view
(whether caused by loading a new page or clicking
on an internal hyperlink to jump to another place in
the same page). Development environments like
Eclipse have borrowed this idiom for navigation in
code editors; you can press Back to undo window
switching and scrolling.

How much state is recovered?

• Select text, delete it, and then undo
– Text is restored
– But is selection restored? Cursor position?

Spring 2008 6.831 User Interface Design and Implementation 16

Even if the Undo stream doesn’t include all the
view changes you make, how much of the view
state will be restored when it reverses a model
change? When you undo a text edit, for example,
will the selection highlight be restored as well?
Will the text cursor be put back where it was before
the edit? If the text scrolls, will it be scrolled back
to the same place?

How far back can you undo?

• Often a limit on history size
– Used to be one action -- now usually hundreds, or

infinite
• Does action stream persist across application

sessions?
– If so, stream must be saved to file

• Does it persist across File/Save?
– Not in MS Office

Spring 2008 6.831 User Interface Design and Implementation 17

Finally, how far back will the undo history stream
go? Old Macintosh applications had only single
undo – i.e., you could only undo the last action, and
no farther. Thankfully, cheap memory has made
deep undo history feasible and commonplace.

Even though memory no longer limits undo, the
conventional model of undo still does. In most
applications, Undo is a transient phenomenon,
limited to a single application session. If you shut
down the application, and then restart it, the undo
history is erased. So you can’t undo past the start
of the current session.

Some applications even erase the undo history as
soon as the user saves a document to disk.
(Microsoft Office does this.) Presumably the
reason is consistency – i.e., after you save, the
model should be in the same state that it would be
if you closed the application and restarted it – but it
poses a serious cost on users who habitually save
frequently.

Curious Case Study: Outlook Sticky Notes

Spring 2008 6.831 User Interface Design and Implementation 18

Suggested by Chris Child

Try this in Outlook 2007 (or Outlook 2003, but
doesn’t work in Outlook Express). Create a sticky
note (File/New/Note). Type some text into the
note, and move the note to a different place on the
screen. Then press Ctrl-Z to undo. It undoes not
only what you typed, but also the position of the
note – and the note animates through all the
different positions you moved it to on the screen.

Recall the important dimensions of an undo model:

- what stream of actions is undone? Only the
actions that affected this sticky note; other sticky
notes, and other Outlook windows, aren’t affected.

- how is the stream divided into units? It turns out
that the entire stream of actions since the note was
created is a single unit – everything gets undone
when you press Ctrl-Z once.

- what state is actually restored? everything about
the note – its position, its size, even its color.

- how far back can you undo? As far as the creation
of the note – unless you switch to another window.
Switching away from the note clears the note’s
undo history, so further undo is impossible.

What else is wrong here? As the screenshot shows,
the animation wasn’t even done properly – instead
of animating using automatic redraw, Outlook
paints the moving note directly on the screen,
leaving a smear behind it. Notice that the smear is
visible in some parts of the Outlook window, but
not in others. Why do you think that is?

Design Principles for Undo

• Visibility
– Make sure undone effects are visible

• e.g., scrolled into view, selected, possibly animated
• Aggregation

– Units should be “chunks” of action stream: typed strings, dialogs, macros
• Reversibility of the Undo itself

– Support Redo as well as Undo
– Undo to a state where user can immediately reissue the undone command,

or a variant on it
• e.g., restore selection & cursor position

• Reserve it for model changes, not view changes
– For consistency with other applications, reserve Undo for changes to

backend data
• “Undo” is not the only way to support reversibility

– Backspace undoes typing, Back undoes browsing, Recent Files undoes file
closing, scrolling back undoes scrolling

– Forward error recovery: using new actions to fix errors

Spring 2008 6.831 User Interface Design and Implementation 19

The upshot of all these questions is that it’s very
hard for users to predict what Undo will do. Faced
with this unpredictability, a common strategy is to
press Undo until you see the effect you want to
reverse actually go away, or until you realize it’s
gone too far without solving the problem (i.e., it’s
reversed an older, still-desired effect). So visibility
of Undo’s effects is a critical part of making it
usable. Whenever Undo undoes a command, it
should make sure that the effects of that have a
visible change on the screen. If the user has
changed the viewpoint (e.g. scrolling) since doing
the command that is now being undone, the
viewpoint should be changed back, so that it’s easy
to see what was reversed.
The unit actions should correspond to chunks of
the user’s interaction: whole typed words (or
strings), complete dialogs, user-defined macros.
Undo itself should be reversible, so that if you
overshoot, you can come back. That’s what the
Redo command is for. Another way to reverse an
Undo is to manually issue the undone command
again; a good undo mechanism should set up the
conditions for this as well. For example, suppose
you select a range of text and Delete it, and then
Undo that deletion. The editor should not only
restore the text, but also restore the selection
highlight, so that you can immediately press Delete
to delete the same text again.
For consistency, reserve the Undo command for
model changes. You can use other commands for
view changes. Keep in mind that you don’t
necessarily need a command named “Undo” to
support reversibility. There are other commands
that move through other action streams (Back), and
physical manipulations (like scrollbar dragging)
support direct reversibility.
Users may not even think of reaching for Undo if
the rest of your interface makes it easy to reverse
undesired changes. Undo is a form of backward
error recovery, which fixes errors by going back
in time. A more natural way of thinking is
forward error recovery – using other commands
to reverse the change. For example, to undo a Bold
command by forward error recovery, you select the
text again and toggle Bold off. If your interface
supports forward error recovery as much as
possible, then warts in the Undo model won’t hurt
as much.

Visualizing the History

• Use Undo/Redo to browse history and view
resulting application state
– Not ideal, since user is making changes to model

just to view the history
• Direct visual representation

Spring 2008 6.831 User Interface Design and Implementation 20

web browser history graphical history

The biggest usability problem with Undo is lack of
visibility – the user can’t directly see the history
that they’re browsing through. That’s what makes
it harder to learn and understand the model behind
Undo.

In practice, most applications only visualize the
undo history implicitly – i.e., the user can press
Undo and Redo to browse back and forth through
the history, viewing the resulting states of the entire
application or document. That’s hardly ideal.

Some applications use direct visualizations of
history to good effect. For example, a web browser
displays the history of pages visited (here, the Back
button is acting as an undo command for hyperlink
browsing). The browser history is concise, has
user-sensible labels (page titles, not URLs), and
enables direct selection (clicking on a history item
to jump to it).

One research system, a drawing editor,
experimented with graphical history – cartoon-
strip visualizations of the effects of each command
in the history on the actual document, zoomed in
tightly to show just enough context (image from
Kurlander & Feiner, “A history-based macro by
example system”, UIST ’92).

Undo and Redo Lists

• History list is a script of commands that
generates the current model state

• Undo & Redo edit the script
– Undo removes last action from history list and puts

it on redo list
– Redo adds back one action from redo list
– Undo & Redo are not put in either list

Spring 2008 6.831 User Interface Design and Implementation 21

History list Redo list

Current state

In many applications, the undo history can be
formally regarded as a script of commands, with
the invariant that the current state of the model is
equivalent to the state that would be generated by
running the script against the initial model state
(e.g., the state of the file on disk). This model
explains why applications like Microsoft Office
choose to clear the undo history whenever you save
the file.

In this model, the Undo and Redo commands are
not ordinary commands that are added to this script,
but rather metacommands that edit the history.
Undo removes the last command on the history list
(and puts it at the start of a redo list). Redo puts
the first command on the redo list back on the
history list. In order to preserve the invariant, the
current state of the model is changed likewise
whenever the history list is changed. But the Undo
and Redo commands issued by the user are not
added to the history.

Adding New Commands to History

• New command is added to history list
– And clears the redo list (in most apps)

• Or new command may branch history

Spring 2008 6.831 User Interface Design and Implementation 22

History list Redo list

New command

History list Redo list

New command

Invoking a new command usually clears the redo
list. This is the safest approach, because the new
command may destroy preconditions of commands
sitting on the redo list. (For example, what if a
command on the redo list changed the color of a
certain circle, but the new command deleted that
circle? What would redoing that command mean?)

Some research systems have experimented with a
history tree, in which invoking a new command
creates a new branch, keeping the redo list as the
other branch. If the user ever backs up to that
branch again in the history, the Redo command
would offer a choice going forward again. Some
research web browsers have adopted a similar
perspective on the page history, building a tree of
browsing. In practice, these models are too
complicated to understand without history
visualization, and even then it’s not clear that
they’re valuable enough to be worth the
complication.

Removing Commands from History
(Selective Undo)

• Selective undo = deleting any action from the history
list, not necessarily the last

• Selective redo = redoing any action in redo list, not
necessarily the first

• Need to visualize history to choose action to undo
• Essential for multiuser applications
• Watch out for command interdependencies

Spring 2008 6.831 User Interface Design and Implementation 23

Create
rectangle #5

Distribute all
rectangles horizontally

Delete text
start=10,len=10

Delete text
start=0,len=5

Another advanced feature is selective undo, which
allows the user to reach back and remove the effect
of any action in the history, not necessarily the last
action (or conversely, reach forward to any action
in the redo list and apply it). Making selective
undo available to the user requires some
visualization of the history; otherwise users won’t
be able to indicate which action should be
selectively undone. But multiuser applications
(where users can make simultaneous changes to the
same model) basically have to implement selective
undo in order to support a local, per-user undo
model. The application must reach back and undo
this user’s last action, regardless of how many
changes were made by other users in the interim.

The tricky part of implementing selective undo is
dependencies between commands in the history.
Some examples are shown here. What happens if
you selectively undo the create-rectangle action?
Presumably rectangle #5 disappears -- but later in
the history, the rectangle participated in an
alignment operation. Do the other rectangles stay
where they are, or do they behave as if the original
rectangle never existed, redistributing themselves
equally again? A script undo would dictate the
latter, because of the invariant that the current state
should match the result of running all the

commands in the history. But a simpler model of
selective undo would simply delete the rectangle
(Berlage, “A Selective Undo Mechanism for
Graphical User Interfaces Based on Command
Objects”, TOCHI, v1 n3, September 1994), or
perhaps forbid the create-rectangle to be selectively
undone.

Similarly, the representations used for commands
may interfere with selective undo. Suppose the
actions on a text editor’s undo history are described
by absolute offsets (from the start of the text).
Then if you selectively undo an old action, it may
corrupt the coordinates of all subsequent actions in
the history. This problem can be solved by
choosing a different representation (e.g., invisible
markers in the text), or by implementing
commutativity rules which specify how to fix up
the subsequent actions in the history.

Summary

• User control over the dialog
– At least veto power: every operation should have

Cancel
• User control over data

– User-provided data should be editable
• Support undo

– But it’s more complex than it seems

Spring 2008 6.831 User Interface Design and Implementation 24

