
Spring 2008 6.831 User Interface Design and Implementation 1

Lecture 11: Declarative UI

UI Hall of Fame or Shame?

Spring 2008 6.831 User Interface Design and Implementation 2

Source: Daniel P.B. Smith, Risks Digest, v24 n44

Today’s hall of fame or shame candidate is this
DVD player. The arrow keys on a DVD player are
supposed to move a cursor highlight around the
screen. If you look carefully at the picture,
however, you’ll see that the arrow diamond has
been rotated by 45 degrees.

Think about:

- natural mapping

- consistency, both external and internal

Today’s Topics

• Declarative user interface
• HTML
• CSS
• Model-based UI

Spring 2008 6.831 User Interface Design and Implementation 3

Declarative vs. Procedural

• Declarative programming
– Saying what you want

• Procedural programming
– Saying how to achieve it

Spring 2008 6.831 User Interface Design and Implementation 4

Declarative
A tower of 3 blocks.

Procedural
1. Put down block A.
2. Put block B on block A.
3. Put block C on block B.

Today we’ll be talking about ways to implement
user interfaces using higher-level, more abstract
specifications – particularly, declarative
specifications. The key advantage of declarative
programming is that you just say what you want,
and leave it to an automatic tool to figure out how
to produce it. That contrasts with conventional
procedural programming, where the programmer
has to say, step-by-step, how to reach the desired
state.

HTML is a Declarative UI Language

• HTML declaratively specifies a view
hierarchy

<div id=“main”>
<div id=“toolbar”>

<button>

Cut

</button>
</div>
<textarea id=“editor”></textarea>

</div>

Spring 2008 6.831 User Interface Design and Implementation 5

div

div textarea

button

img text

Cut

Our first example of declarative UI programming is
HTML, which is a declarative specification of a
view hierarchy. An HTML element is a
component in the view hierarchy. The type of an
element is its tag, such as div, button, and img.
The properties of an element are its attributes. In
the example here, you can see the id attribute
(which gives a unique name to an element) and the
src attribute (which gives the URL of an image to
load in an img element); there are of course many
others.

There’s an automatic algorithm, built into every
web browser, that constructs the view hierarchy
from an HTML specification – it’s simply an
HTML parser, which matches up start tags with end
tags, determines which elements are children of
other elements, and constructs a tree of element
objects as a result. So, in this case, the automatic
algorithm for this declarative specification is pretty
simple. We’ll see more complex examples later in
the lecture.

Declarative HTML vs. Procedural Java

HTML

<div id=“main”>
<div id=“toolbar”>

<button>

Cut

</button>
</div>
<textarea id=“editor”></textarea>

</div>

Spring 2008 6.831 User Interface Design and Implementation 6

Java Swing

JPanel main = new JPanel();

JPanel toolbar = new JPanel();
JButton button = new JButton();

button.setIcon(…);
button.setLabel(“Cut”);

toolbar.add(button);
main.add(toolbar);

JTextArea editor = new JTextArea();
main.add(editor);

Cut

To give an analogy that you should be familiar
with, here’s some Swing code that produces the
same interface procedurally. By comparison, the
HTML is more concise, more compact – a common
advantage of declarative specification.

Note that neither the HTML nor the Swing code
actually produces the layout shown in the picture,
at least not yet. We’d have to add more
information to both of them to get the components
to appear with the right positions and sizes. We’ll
talk about layout later.

Declarative HTML vs. Procedural DOM

HTML

<div id=“main”>
<div id=“toolbar”>

<button>

Cut

</button>
</div>
<textarea id=“editor”></textarea>

</div>

Spring 2008 6.831 User Interface Design and Implementation 7

Document Object Model (DOM) in Javascript

var main = document.createElement(“div”);
main.setAttribute(“id”, “window”);

var toolbar = document.createElement(“div”);
toolbar.setAttribute(“id”, “toolbar”);

var button = document.createElement(“button”);
var img = document.createElement(“img”);
img.setAttribute(“src”, “cut.png”);
button.appendChild(img);

var label = document.createTextNode(“Cut”);
button.appendChild(label);

toolbar.appendChild(button);
window.appendChild(toolbar);

var editor = document.createElement(“textarea”);
editor.setAttribute(“id”, “editor”);
window.appendChild(editor);

Cut

Here’s procedural code that generates the same
HTML component hierarchy, using the Javascript
programming and the Document Object Model
(DOM). DOM is a standard set of classes and
methods for interacting with a tree of HTML or
XML objects procedurally. (DOM interfaces exist
not just in Javascript, which is the most common
place to see it, but also in Java and other
languages.)

There are a lot of similarities between the
procedural code here and the procedural Swing
code on the previous page – e.g. createElement is
analogous to a constructor, setAttribute sets
attributes on elements, and appendChild is
analogous to add.

Incidentally, you don’t always have to use the
setAttribute method to change attributes on HTML
elements. In Javascript, many attributes are
reflected as properties of the element (analogous to
fields in Java). For example,
obj.setAttribute(“id”, value) could also be written
as obj.id = value. Be warned, however, that only
standard HTML attributes are reflected as object
properties (if you call setAttribute with your own
wacky attribute name, it won’t appear as a
Javascript property), and sometimes the name of
the attribute is different from the name of the
property. For example, the “class” attribute must
be written as obj.className when used as a
property.

Mixing Declarative and Procedural Code

HTML
<div id=“main”>

<textarea id=“editor”></textarea>
</div>

<script>
var toolbar = document.createElement(“div”);
toolbar.setAttribute(“id”, “toolbar”);

toolbar.innerHTML =
“<button>Cut</button>”;

var editor = document.getElementById(“editor”);
var main = editor.parentNode;
main.insertBefore(toolbar, editor);

</script>

Spring 2008 6.831 User Interface Design and Implementation 8

div

div textarea

button

img text

Cut

To actually create a working interface, you
frequently need to use a mix of declarative and
procedural code. The declarative code is generally
used to create the static parts of the interface, while
the procedural code changes it dynamically in
response to user input or model changes. Here’s a
(rather contrived) example that builds part of the
interface declaratively, then fills it in with
procedural code.

The <script> element allows you to introduce
procedural code (which most web browsers assume
is written Javascript) into the declarative
specification. Code in the <script> element is
executed immediately when the HTML page is first
displayed, but of course you could also write
functions or event handlers in the <script> element
so that the procedural code runs later.

Even inside the procedural code, we can use
declarative code. The innerHTML property of an
HTML element represents the HTML between its
start tag and end tag – in other words, the element’s
descendents in the view hierarchy. Setting this
property removes all its current descendents and
replaces them with elements created by the HTML
you provide. Here, the button and img elements are
created and added to the toolbar in this way.

The last part of the script shows a few other useful
things. Putting id attributes on an element makes it
easy to get a reference to it using getElementById
in procedural code. (You can also refer to elements
by id in declarative code.) You can also navigate
around the element tree using parentNode and
childNodes[] attributes. Also, you can insert new
elements using insertBefore, not just append them;
and you can remove and replace elements with
removeChild and replaceChild. Documentation
for these DOM operations can be found in many
places on the Web; see the problem set for some
useful references.

Advantages & Disadvantages of
Declarative UI

• Usually more compact
• Programmer only has to know how to say

what, not how
– Automatic algorithms are responsible for figuring

out how
• May be harder to debug

– Can’t set breakpoints, single-step, print in a
declarative specification

– Debugging may be more trial-and-error
• Authoring tools are possible

– Declarative spec can be loaded and saved by a
tool; procedural specs generally can’t

Spring 2008 6.831 User Interface Design and Implementation 9

Now that we’ve worked through our first simple
example of declarative UI – HTML – let’s consider
some of the advantages and disadvantages.

First, the declarative code is usually more compact
than procedural code that does the same thing.
That’s mainly because it’s written at a higher level
of abstraction: it says what should happen, rather
than how.

But the higher level of abstraction can also make
declarative code harder to debug. There’s
generally no notion of time, so you can’t use
techniques like breakpoints and print statements to
understand what’s going wrong. The automatic
algorithm that translates the declarative code into
working user interface may be complex and hard to
control – i.e., small changes in the declarative
specification may cause large changes in the
output. Declarative specs need debugging tools that
are customized for the specification, and that give
insight into how the spec is being translated;
without those tools, debugging becomes trial and
error.

On the other hand, an advantage of declarative code
is that it’s much easier to build authoring tools for
the code, like HTML editors or GUI builders, that
allow the user interface to be constructed by direct
manipulation rather than coding. It’s much easier
to load and save a declarative specification than a
procedural specification. Some GUI builders do
use procedural code as their file format – e.g.,
generating Java code and automatically inserting it
into a class. Either the code generation is purely
one-way (i.e., the GUI builder spits it out but can’t
read it back in again), or the procedural code is so
highly stylized that it amounts to a declarative
specification that just happens to use Java syntax.
If the programmer edits the code, however, they
may deviate from the stylization and break the GUI
builder’s ability to read it back in.

Important HTML Elements for UI Design

• Layout
Box <div>
Grid <table>

• Text
Font & color
Paragraph <p>
List ,

• Widgets
Hyperlink <a>
Textbox <input type=“text”>
Textarea <textarea>
Drop-down <select>
Listbox <select multiple=“true”>
Button <input type=“button”>,<button>
Checkbox <input type=“checkbox”>
Radiobutton <input type=“radio”>

Spring 2008 6.831 User Interface Design and Implementation 10

• Pixel output

• Stroke output
<canvas> (Firefox, Safari)

• Procedural code
<script>

• Style sheets
<style>

To complete our survey of HTML as a language for
generating component hierarchies, here is a cheat
sheet of the most important elements that you
might use in an HTML-based user interface.

The <div> and elements are particularly
important, and may be less familiar to people who
have only used HTML for writing textual web
pages. By default, these elements have no
presentation associated with them; you have to add
it using style rules (which we’ll explain next). The
<div> element creates a box (not unlike JPanel in
Swing), and the element changes textual
properties like font and color while allowing its
contents to flow and word-wrap.

HTML has a rather limited set of widgets. There
are other declarative UI languages similar to
HTML that have much richer sets of built-in
components, such as XUL (used in Mozilla
Firefox) and XAML (used in Microsoft Windows
Vista).

HTML does support both pixel and stroke output,
although the stroke output is nonstandard – some
browsers support the <canvas> element, which has
methods for making stroke output using procedural
code, not much different from Swing’s Graphics
object.

Finally, we’ve already seen how to use the <script>
element to embed procedural code (usually
Javascript) into an HTML specification. The
<style> element is used for embedding another
declarative specification, style sheets, which is
what we’ll look at next.

Cascading Style Sheets (CSS)

• Key idea: separate the structure of the UI
(view hierarchy) from details of presentation
– HTML is structure, CSS is presentation

• Two ways to use CSS
– As an attribute of a particular HTML element

<button style=“font-weight:bold;”> Cut </button>

– As a separate style sheet defining pattern/style
rules, possibly for many HTML elements at once

<style>
button { font-weight:bold; }

</style>

Spring 2008 6.831 User Interface Design and Implementation 11

Our second example of declarative specification is
Cascading Style Sheets, or CSS. Where HTML
creates a view hierarchy, CSS adds style
information to the hierarchy – fonts, colors,
spacing, and layout.

There are two ways to use CSS. The first isn’t very
interesting, because we’ve seen it before in Swing:
changing styles directly on individual components.
The style attribute of any HTML element can
contain a set of CSS settings (which are simply
name:value pairs separated by semicolons).

The second way is more interesting to us here,
because it’s more declarative. Rather than finding
each individual component and directly setting its
style attribute, you specify a style sheet that defines
rules for assigning styles to elements. Each rule
consists of a pattern that matches a set of HTML
elements, and a set of CSS definitions that specify
the style for those elements. In this simple
example, button matches all the button elements,
and the body of the rule sets them to boldface font.

The style sheet is included in the HTML by a
<style> element, which either embeds the style
sheet as text between <style> and </style>, or
refers to a URL that contains the actual style sheet.

CSS Selectors

• Each rule in a style sheet has a selector
pattern that matches a set of HTML elements
Tag name

button { font-weight:bold; }
ID

#main { background-color:
rgb(100%,100%,100%); }

Class attribute
.toolbarButton { font-size: 12pt; }

Element paths
#toolbar button { display: hidden; }

Spring 2008 6.831 User Interface Design and Implementation 12

<div id=“main”>
<div id=“toolbar”>

<button class=“toolbarButton”>

</button>
</div>
<textarea id=“editor”></textarea>

</div>

The pattern in a CSS rule is called a selector. The
language of selectors is simple but powerful. Here
are a couple of the more common selectors.

CSS selectors aren’t the only way to declaratively
specify a set of HTML nodes (although it’s the only
way that’s permitted in a CSS style sheet rule).
Another declarative way to describe a set of
elements is XPath, a pattern language that has
some similarities to CSS selectors but is strictly
more powerful.

Cascading and Inheritance

• If multiple rules apply to the same element, rules are
automatically combined with cascading precedence
– Source: browser defaults < web page < user overrides

Browser says: a { text-decoration: underline; }
Web page says: a { text-decoration: none; }
User says: a { text-decoration: underline; }

– Rule specificity: general selectors < specific selectors
button { font-size: 12pt; }
.toolbarButton { font-size: 14pt; }

• Styles can also be inherited from element’s parent
– This is the default for simple styles like font, color, and text

properties
body { font-size: 12pt; }

Spring 2008 6.831 User Interface Design and Implementation 13

There can be multiple style sheets affecting an
HTML page, and multiple rules within a style
sheet. Each rule affects a set of HTML elements, so
what happens when an element is affected by more
than one rule? If the rules specify independent
style properties (e.g., one rule specifies font size,
and another specifies color), then the answer is
simple: both rules apply. But what if the rules
conflict with each other – e.g., one says the element
should be bold, and another says it shouldn’t?

To handle these cases, declarative rule-based
systems need a conflict resolution mechanism, and
CSS is no different. CSS’s resolution mechanism
is called cascading (hence the name, Cascading
Style Sheets). It has two main resolution strategies.
The overall idea is that more specific rules should
take precedence over more general rules. This is
reflected first in where the style sheet rule came
from: some rules are web browser defaults, for all
users and all web pages; others are defaults set by a
specific user for all web pages; others are provided
by a specific web page in a <style> element. In
general, the web page rule wins (although the user
can override this by setting the priority of their own
CSS rules to important). Second, rules with more
specific selectors (like specific element IDs or class
names) take precedence over rules with more
general selectors (like element names).

This is an example of why declarative specification
is powerful. A single rule – like a user override –
can affect a large swath of the behavior of the
system, without having to write a lot of procedural
code, and without having to make sure that
procedural code runs at just the right time.

But it also illustrates the difficulties of debugging
declarative specifications. You may add a rule to
the style sheet, maybe trying to change a button’s
font size, only to see no change in the result –
because some other rule that you aren’t aware of is
taking precedence. CSS conflict resolution is a
complex process that may require trial-and-error to
debug.

Declarative Styles vs. Procedural Styles

CSS

button { border: 2px; }

Spring 2008 6.831 User Interface Design and Implementation 14

Javascript

var buttons =
document.getElementsByTagName(“button”);

for (var i = 0; i < buttons.length; ++i) {
var button = buttons[i];
button.style.border = “2px”;
// not button.setAttribute(“style”, “border: 2px”);

}

<div id=“main”>
<div id=“toolbar”>

<button style=“font-size: 12pt”>

</button>
</div>
<textarea id=“editor”></textarea>

</div>

Just as with HTML, we can change CSS styles
procedurally as well. We saw earlier that HTML
attributes can be get and set using Javascript object
properties (like obj.id) rather than methods (like
obj.setAttribute(“id”,…). For CSS styles, this
technique is actually essential, since calling
setAttribute() will replace the current style attribute
entirely. In this example, if we called
button.setAttribute(“style”, “border:2px”), the
original style attribute (which set the font size to
12pt) would be lost. So it’s best to use the style
property, not the style attribute, when you’re
changing styles procedurally. The style property
points to an object with properties representing all
the style characteristics in CSS.

Java Swing: Declarative vs. Procedural

Java Swing
JFrame frame = new JFrame();
JButton button = new JButton(“Press me”);
frame.getContentPane().add(button);
button.addActionListener(...)
frame.pack();
frame.setVisible(true);

JavaFX
Frame {

content: Button {
text: “Press Me”
action: ...

}
visible: true

}

Spring 2008 6.831 User Interface Design and Implementation 15

The closest thing Java Swing has to declarative
specification is probably the JavaFX scripting
language (formerly called F3). Although JavaFX is
essentially a procedural scripting language, it
includes a declarative syntax for constructing Java
objects, shown on the right.

Other Declarative UI Languages

• XUL
– used by Firefox

• XAML
– used by Windows Presentation Foundation and

Silverlight

Spring 2008 6.831 User Interface Design and Implementation 16

This lecture has discussed the most widely-used
declarative user interface language (HTML), but
other up-and-coming languages include XUL and
XAML.

Model-Based User Interfaces

• Programmer writes logical model of UI
– State variables (bool, int, string, list)
– Commands

• System generates actual presentation
– Grouping into windows, tabs, panels
– Widget selection
– Layout

• Same motivation as other declarative UI
– Higher-level programming
– Adapting to change: particularly for devices and users

• Screen size (watch, phone, PDA, laptop, desktop, wall)
• Widgets available (phone vs. desktop)
• Input style (mouse vs. arrow buttons; speech, finger, pen)
• Output style (speech vs. display)
• User behavior (uses some components more)

Spring 2008 6.831 User Interface Design and Implementation 17

Finally, let’s discuss one more example of
declarative UI, which is still farther-out. A model-
based user interface is not only declarative but
also abstract, so that the user interface can be
adapted automatically to different situations.

The programmer provides a high-level description
of the user interface, often (and confusingly) called
a model, which consists of a set of data variables
and commands. A model for a login dialog box,
for example, might state that are two string
variables (a username and password) and one
command (login).

This description is then used to generate a
presentation. Aspects of the presentation that must
be generated include its grouping (how variables
and commands are organized); the particular
widgets selected for each model element (e.g., a
string variable might be represented by a textfield,
a text area, or a combobox; a command might be a
button, menu item, keyboard shortcut, or all three).
Layout is part of presentation, of course; so are
labels for the widgets, font and color choices.

The presentation can’t be generated completely
automatically, of course – UI design isn’t that easy
to automate (yet). Generally, the programmer has
to provide some presentation specification as well –
perhaps completely specified, or merely as hints or
constraints on legal or desirable presentations.

Model-based user interface is driven by the same
motivations as other declarative UI: simpler
programming, and adapting to change. But the
kinds of change that model-based UI can adapt to is
broader. Ideally, a model-based UI should be able
to generate presentations for a broad variety of
devices and I/O styles: not just a desktop with
mouse and keyboard, but a cellphone with a tiny
screen, buttons, and voice I/O; or a large wall
screen with touch-sensitive finger input. Another
kind of adaptation envisioned by model-based UI is
user adaptation; an interface might change
depending on how the user interacts with it.

Summary

• Declarative says what, leaving how to
automatic mechanisms

• Separation of structure (HTML) and
presentation (CSS)

• Need to know how to change HTML and CSS
procedurally too

Spring 2008 6.831 User Interface Design and Implementation 18

