
1

Fall 2006 6.831 UI Design and Implementation 1

Lecture 9: Declarative UI

2

Fall 2006 6.831 UI Design and Implementation 2

UI Hall of Fame or Shame?

Today’s candidate for the Hall of Fame & Shame is the Alt-Tab window switching

interface in Microsoft Windows. This interface has been copied by a number of desktop

systems, including KDE, Gnome, and even Mac OS X.

The first observation to make is that this interface is designed only for keyboard interaction.

Alt-Tab is the only way to make it appear; pressing Tab (or Shift-Tab) is the only way to

cycle through the choices. If you try to click on this window with the mouse, it vanishes.

The interface is weak on affordances, and gives the user little help in remembering how to

use it.

But that’s OK, because the Windows taskbar is the primary interface for window switching,

providing much better visibility and affordances. This Alt-Tab interface is designed as a

shortcut, and we should evaluate it as such.

It’s pleasantly simple, both in graphic design and in operation. Few graphical elements,

good alignment, good balance. The 3D border around the window name could probably be

omitted without any loss.

This interface is a mode (since pressing Tab is switching between windows rather than

inserting tabs into text), but it’s spring-loaded, happening only as long as the Alt button is

held down. This spring-loading also provides good dialog closure.

Is it efficient? A common error, when you’re tabbing quickly, is to overshoot your target

window. You can fix that by cycling around again, but that’s not as reversible as just

moving backwards with a mouse. (You can also back up by holding down Shift when you

press Tab, but that’s not well-communicated by this interface, and it’s tricky to negotiate

while you’re holding Alt down.)

3

Fall 2006 6.831 UI Design and Implementation 3

UI Hall of Fame or Shame?

For comparison, let’s look at the Exposé feature in Mac OS X. When you push F9 on a Mac, it displays all the

open windows – even hidden windows, or windows covered by other windows – shrinking them as necessary

so that they don’t overlap. Mousing over a window displays its title, and clicking on a window brings that

window to the front and ends the Exposé mode, sending all the other windows back to their old sizes and

locations.

Like Alt-Tab, Exposé is also a mode. Unlike Alt-Tab, however, it is not spring-loaded. It depends instead on

dramatic visual differences as a mode indicator – with its shrunken, tiled windows, Exposé mode usually looks

a lot different than the normal desktop.

To get out of Exposé mode without choosing a new window, you can press F9 again, or you can click the

window you were using before. That’s easier to discover and remember than Alt-Tab’s mechanism – pressing

Escape. When I use Alt-Tab, and then decide to abort it, I often find myself cycling through all the windows

trying to find my original window again. Both interfaces support user control and freedom, but Exposé

seems to make canceling more efficient.

The representation of windows is much richer in Exposé than in Alt-Tab. Rather than Alt-Tab’s icons (many

of which are identical, when you have several documents open in the same application), Exposé uses the

window itself as its visual representation. That’s much more in the spirit of direct manipulation. (A version

of Alt-Tab included in Windows Power Toys shows images of the windows themselves – try it!)

Let’s look at efficiency more deeply. Alt-Tab is a very linear interface – to pick an arbitrary window out of

the n windows you have open, you have to press Tab O(n) times. Exposé, on the other hand, depends on

pointing – so because of Fitts’s Law, the cost is more like O(log n). (Of course, this analysis only considers

motor movement, not visual search time; it assumes you already know where the window you want is in each

interface. But Exposé probably wins on visual search, too, since the visual representation shows the window

itself, rather than a frequently-ambiguous icon.)

But Alt-Tab is designed to take advantage of temporal locality; the windows you visited recently are at the

start of the list. So even if Exposé is faster at getting to an arbitrary window, Alt-Tab really wins on one very

common operation: toggling back and forth between two windows.

4

Fall 2006 6.831 UI Design and Implementation 4

Today’s Topics

• Declarative user interface

• Automatic layout

• Constraints

5

Fall 2006 6.831 UI Design and Implementation 5

Declarative vs. Procedural

• Declarative programming

–Saying what you want

• Procedural programming

–Saying how to achieve it

Declarative
A tower of 3 blocks.

Procedural
1. Put down block A.

2. Put block B on block A.
3. Put block C on block B.

Today we’ll be talking about ways to implement user interfaces using higher-level, more

abstract specifications – particularly, declarative specifications. The key advantage of

declarative programming is that you just say what you want, and leave it to an automatic

tool to figure out how to produce it. That contrasts with conventional procedural

programming, where the programmer has to say, step-by-step, how to reach the desired

state.

6

Fall 2006 6.831 UI Design and Implementation 6

HTML is a Declarative UI Language

• HTML declaratively specifies a view

hierarchy

<div id=“main”>
<div id=“toolbar”>

<button>

Cut

</button>
</div>

<textarea id=“editor”></textarea>
</div>

div

div textarea

button

img text

Cut

Our first example of declarative UI programming is HTML, which is a declarative

specification of a view hierarchy. An HTML element is a component in the view hierarchy.

The type of an element is its tag, such as div, button, and img. The properties of an element

are its attributes. In the example here, you can see the id attribute (which gives a unique

name to an element) and the src attribute (which gives the URL of an image to load in an

img element); there are of course many others.

There’s an automatic algorithm, built into every web browser, that constructs the view

hierarchy from an HTML specification – it’s simply an HTML parser, which matches up

start tags with end tags, determines which elements are children of other elements, and

constructs a tree of element objects as a result. So, in this case, the automatic algorithm for

this declarative specification is pretty simple. We’ll see more complex examples later in the

lecture.

7

Fall 2006 6.831 UI Design and Implementation 7

Declarative HTML vs. Procedural Java

HTML

<div id=“main”>

<div id=“toolbar”>
<button>

Cut

</button>

</div>

<textarea id=“editor”></textarea>
</div>

Java Swing

JPanel main = new JPanel();

JPanel toolbar = new JPanel();

JButton button = new JButton();

button.setIcon(…);

button.setLabel(“Cut”);

toolbar.add(button);

main.add(toolbar);

JTextArea editor = new JTextArea();

main.add(editor);

Cut

To give an analogy that you should be familiar with, here’s some Swing code that produces

the same interface procedurally. By comparison, the HTML is more concise, more compact

– a common advantage of declarative specification.

Note that neither the HTML nor the Swing code actually produces the layout shown in the

picture, at least not yet. We’d have to add more information to both of them to get the

components to appear with the right positions and sizes. We’ll talk about layout later.

8

Fall 2006 6.831 UI Design and Implementation 8

Declarative HTML vs. Procedural DOM

HTML

<div id=“main”>

<div id=“toolbar”>
<button>

Cut

</button>

</div>

<textarea id=“editor”></textarea>
</div>

Document Object Model (DOM) in Javascript

var main = document.createElement(“div”);

main.setAttribute(“id”, “window”);

var toolbar = document.createElement(“div”);

toolbar.setAttribute(“id”, “toolbar”);

var button = document.createElement(“button”);

var img = document.createElement(“img”);

img.setAttribute(“src”, “cut.png”);
button.appendChild(img);

var label = document.createTextNode(“Cut”);
button.appendChild(label);

toolbar.appendChild(button);

window.appendChild(toolbar);

var editor = document.createElement(“textarea”);
editor.setAttribute(“id”, “editor”);
window.appendChild(editor);

Cut

Here’s procedural code that generates the same HTML component hierarchy, using the

Javascript programming and the Document Object Model (DOM). DOM is a standard set of

classes and methods for interacting with a tree of HTML or XML objects procedurally.

(DOM interfaces exist not just in Javascript, which is the most common place to see it, but

also in Java and other languages.)

There are a lot of similarities between the procedural code here and the procedural Swing

code on the previous page – e.g. createElement is analogous to a constructor, setAttribute

sets attributes on elements, and appendChild is analogous to add.

Incidentally, you don’t always have to use the setAttribute method to change attributes on

HTML elements. In Javascript, many attributes are reflected as properties of the element

(analogous to fields in Java). For example, obj.setAttribute(“id”, value) could also be

written as obj.id = value. Be warned, however, that only standard HTML attributes are

reflected as object properties (if you call setAttribute with your own wacky attribute name,

it won’t appear as a Javascript property), and sometimes the name of the attribute is

different from the name of the property. For example, the “class” attribute must be written

as obj.className when used as a property.

9

Fall 2006 6.831 UI Design and Implementation 9

Mixing Declarative and Procedural Code

HTML

<div id=“main”>

<textarea id=“editor”></textarea>
</div>

<script>

var toolbar = document.createElement(“div”);

toolbar.setAttribute(“id”, “toolbar”);

toolbar.innerHTML =

“<button>Cut</button>”;

var editor = document.getElementById(“editor”);
var main = editor.parentNode;

main.insertBefore(toolbar, editor);

</script>

div

div textarea

button

img text

Cut

To actually create a working interface, you frequently need to use a mix of declarative and

procedural code. The declarative code is generally used to create the static parts of the

interface, while the procedural code changes it dynamically in response to user input or

model changes. Here’s a (rather contrived) example that builds part of the interface

declaratively, then fills it in with procedural code.

The <script> element allows you to introduce procedural code (which most web browsers

assume is written Javascript) into the declarative specification. Code in the <script>

element is executed immediately when the HTML page is first displayed, but of course you

could also write functions or event handlers in the <script> element so that the procedural

code runs later.

Even inside the procedural code, we can use declarative code. The innerHTML property

of an HTML element represents the HTML between its start tag and end tag – in other

words, the element’s descendents in the view hierarchy. Setting this property removes all

its current descendents and replaces them with elements created by the HTML you provide.

Here, the button and img elements are created and added to the toolbar in this way.

The last part of the script shows a few other useful things. Putting id attributes on an

element makes it easy to get a reference to it using getElementById in procedural code.

(You can also refer to elements by id in declarative code.) You can also navigate around

the element tree using parentNode and childNodes[] attributes. Also, you can insert new

elements using insertBefore, not just append them; and you can remove and replace

elements with removeChild and replaceChild. Documentation for these DOM operations

can be found in many places on the Web; see the problem set for some useful references.

10

Fall 2006 6.831 UI Design and Implementation 10

Advantages & Disadvantages of

Declarative UI

• Usually more compact

• Programmer only has to know how to say
what, not how
– Automatic algorithms are responsible for figuring

out how

• May be harder to debug
– Can’t set breakpoints, single-step, print in a

declarative specification

– Debugging may be more trial-and-error

• Authoring tools are possible
– Declarative spec can be loaded and saved by a

tool; procedural specs generally can’t

Now that we’ve worked through our first simple example of declarative UI – HTML – let’s

consider some of the advantages and disadvantages.

First, the declarative code is usually more compact than procedural code that does the same

thing. That’s mainly because it’s written at a higher level of abstraction: it says what should

happen, rather than how.

But the higher level of abstraction can also make declarative code harder to debug. There’s

generally no notion of time, so you can’t use techniques like breakpoints and print

statements to understand what’s going wrong. The automatic algorithm that translates the

declarative code into working user interface may be complex and hard to control – i.e.,

small changes in the declarative specification may cause large changes in the output.

Declarative specs need debugging tools that are customized for the specification, and that

give insight into how the spec is being translated; without those tools, debugging becomes

trial and error.

On the other hand, an advantage of declarative code is that it’s much easier to build

authoring tools for the code, like HTML editors or GUI builders, that allow the user

interface to be constructed by direct manipulation rather than coding. It’s much easier to

load and save a declarative specification than a procedural specification. Some GUI

builders do use procedural code as their file format – e.g., generating Java code and

automatically inserting it into a class. Either the code generation is purely one-way (i.e., the

GUI builder spits it out but can’t read it back in again), or the procedural code is so highly

stylized that it amounts to a declarative specification that just happens to use Java syntax. If

the programmer edits the code, however, they may deviate from the stylization and break

the GUI builder’s ability to read it back in.

11

Fall 2006 6.831 UI Design and Implementation 11

Important HTML Elements for UI Design

• Layout
Box <div>

Grid <table>

• Text
Font & color

Paragraph <p>

List ,

• Widgets
Hyperlink <a>

Textbox <input type=“text”>
Textarea <textarea>

Drop-down <select>

Listbox <select multiple=“true”>

Button <input type=“button”>,<button>

Checkbox <input type=“checkbox”>

Radiobutton <input type=“radio”>

• Pixel output

• Stroke output
<canvas> (Firefox, Safari)

• Procedural code
<script>

• Style sheets
<style>

To complete our survey of HTML as a language for generating component hierarchies, here

is a cheat sheet of the most important elements that you might use in an HTML-based user

interface.

The <div> and elements are particularly important, and may be less familiar to

people who have only used HTML for writing textual web pages. By default, these elements

have no presentation associated with them; you have to add it using style rules (which we’ll

explain next). The <div> element creates a box (not unlike JPanel in Swing), and the

 element changes textual properties like font and color while allowing its contents to

flow and word-wrap.

HTML has a rather limited set of widgets. There are other declarative UI languages similar

to HTML that have much richer sets of built-in components, such as XUL (used in Mozilla

Firefox) and XAML (used in Microsoft Windows Vista).

HTML does support both pixel and stroke output, although the stroke output is nonstandard

– some browsers support the <canvas> element, which has methods for making stroke

output using procedural code, not much different from Swing’s Graphics object.

Finally, we’ve already seen how to use the <script> element to embed procedural code

(usually Javascript) into an HTML specification. The <style> element is used for

embedding another declarative specification, style sheets, which is what we’ll look at next.

12

Fall 2006 6.831 UI Design and Implementation 12

Cascading Style Sheets (CSS)

• Key idea: separate the structure of the UI

(view hierarchy) from details of presentation

– HTML is structure, CSS is presentation

• Two ways to use CSS

– As an attribute of a particular HTML element

<button style=“font-weight:bold;”> Cut </button>

– As a separate style sheet defining pattern/style

rules, possibly for many HTML elements at once

<style>

button { font-weight:bold; }

</style>

Our second example of declarative specification is Cascading Style Sheets, or CSS. Where

HTML creates a view hierarchy, CSS adds style information to the hierarchy – fonts, colors,

spacing, and layout.

There are two ways to use CSS. The first isn’t very interesting, because we’ve seen it

before in Swing: changing styles directly on individual components. The style attribute of

any HTML element can contain a set of CSS settings (which are simply name:value pairs

separated by semicolons).

The second way is more interesting to us here, because it’s more declarative. Rather than

finding each individual component and directly setting its style attribute, you specify a style

sheet that defines rules for assigning styles to elements. Each rule consists of a pattern that

matches a set of HTML elements, and a set of CSS definitions that specify the style for

those elements. In this simple example, button matches all the button elements, and the

body of the rule sets them to boldface font.

The style sheet is included in the HTML by a <style> element, which either embeds the

style sheet as text between <style> and </style>, or refers to a URL that contains the actual

style sheet.

13

Fall 2006 6.831 UI Design and Implementation 13

CSS Selectors

• Each rule in a style sheet has a selector

pattern that matches a set of HTML elements
Tag name

button { font-weight:bold; }

ID

#main { background-color:

rgb(100%,100%,100%); }

Class attribute

.toolbarButton { font-size: 12pt; }

Element paths

#toolbar button { display: hidden; }

<div id=“main”>
<div id=“toolbar”>

<button class=“toolbarButton”>

</button>

</div>
<textarea id=“editor”></textarea>

</div>

The pattern in a CSS rule is called a selector. The language of selectors is simple but

powerful. Here are a couple of the more common selectors.

CSS selectors aren’t the only way to declaratively specify a set of HTML nodes (although

it’s the only way that’s permitted in a CSS style sheet rule). Another declarative way to

describe a set of elements is XPath, a pattern language that has some similarities to CSS

selectors but is strictly more powerful.

14

Fall 2006 6.831 UI Design and Implementation 14

Cascading and Inheritance

• If multiple rules apply to the same element, rules are
automatically combined with cascading precedence
– Source: browser defaults < web page < user overrides

Browser says: a { text-decoration: underline; }

Web page says: a { text-decoration: none; }
User says: a { text-decoration: underline; }

– Rule specificity: general selectors < specific selectors

button { font-size: 12pt; }

.toolbarButton { font-size: 14pt; }

• Styles can also be inherited from element’s parent
– This is the default for simple styles like font, color, and text

properties

body { font-size: 12pt; }

There can be multiple style sheets affecting an HTML page, and multiple rules within a

style sheet. Each rule affects a set of HTML elements, so what happens when an element is

affected by more than one rule? If the rules specify independent style properties (e.g., one

rule specifies font size, and another specifies color), then the answer is simple: both rules

apply. But what if the rules conflict with each other – e.g., one says the element should be

bold, and another says it shouldn’t?

To handle these cases, declarative rule-based systems need a conflict resolution mechanism,

and CSS is no different. CSS’s resolution mechanism is called cascading (hence the name,

Cascading Style Sheets). It has two main resolution strategies. The overall idea is that

more specific rules should take precedence over more general rules. This is reflected first in

where the style sheet rule came from: some rules are web browser defaults, for all users and

all web pages; others are defaults set by a specific user for all web pages; others are

provided by a specific web page in a <style> element. In general, the web page rule wins

(although the user can override this by setting the priority of their own CSS rules to

important). Second, rules with more specific selectors (like specific element IDs or class

names) take precedence over rules with more general selectors (like element names).

This is an example of why declarative specification is powerful. A single rule – like a user

override – can affect a large swath of the behavior of the system, without having to write a

lot of procedural code, and without having to make sure that procedural code runs at just the

right time.

But it also illustrates the difficulties of debugging declarative specifications. You may add

a rule to the style sheet, maybe trying to change a button’s font size, only to see no change

in the result – because some other rule that you aren’t aware of is taking precedence. CSS

conflict resolution is a complex process that may require trial-and-error to debug.

15

Fall 2006 6.831 UI Design and Implementation 15

Declarative Styles vs. Procedural Styles

CSS

button { border: 2px; }

Javascript

var buttons =

document.getElementsByTagName(“button”);
for (var i = 0; i < buttons.length; ++i) {

var button = buttons[i];

button.style.border = “2px”;
// not button.setAttribute(“style”, “border: 2px”);

}

<div id=“main”>
<div id=“toolbar”>

<button style=“font-size: 12pt”>

</button>

</div>
<textarea id=“editor”></textarea>

</div>

Just as with HTML, we can change CSS styles procedurally as well. We saw earlier that

HTML attributes can be get and set using Javascript object properties (like obj.id) rather

than methods (like obj.setAttribute(“id”,…). For CSS styles, this technique is actually

essential, since calling setAttribute() will replace the current style attribute entirely. In this

example, if we called button.setAttribute(“style”, “border:2px”), the original style attribute

(which set the font size to 12pt) would be lost. So it’s best to use the style property, not the

style attribute, when you’re changing styles procedurally. The style property points to an

object with properties representing all the style characteristics in CSS.

16

Fall 2006 6.831 UI Design and Implementation 16

Automatic Layout

• Layout determines the sizes and

positions of components on the screen

–Also called geometry in some toolkits

• Declarative layout

– Java: layout managers

–CSS: layout styles

• Procedural layout

–Write code to compute positions and sizes

Our first example of declarative user interface should already be somewhat familiar to you:

automatic layout. In Java, automatic layout is a declarative process. First you specify the

graphical objects that should appear in the window, which you do by creating instances of

various objects and assembling them into a component hierarchy. Then you specify how

they should be related to each other, by attaching a layout manager to each container.

You can contrast this to a procedural approach to layout, in which you actually write Java or

Javascript code that computes positions and sizes of graphical objects. You wrote a lot of

this code in the checkerboard assignment, for example.

17

Fall 2006 6.831 UI Design and Implementation 17

Reasons to Do Automatic Layout

• Higher level programming

–Shorter, simpler code

• Adapts to change

–Window size

–Font size

–Widget set (or theme or skin)

– Labels (internationalization)

–Adding or removing components

Here are the two key reasons why we like automatic layout – and these two reasons

generalize to other forms of declarative UI as well.

First, it makes programming easier. The code that sets up layout managers is usually much

simpler than procedural code that does the same thing.

Second, the resulting layout can respond to change more readily. Because it is generated

automatically, it can be regenerated any time changes occur that might affect it. One

obvious example of this kind of change is resizing the window, which increases or

decreases the space available to the layout You could handle window resizing with

procedural code as well, of course, but the difficulty of writing this code means that

programmers generally don’t. (That’s why many Windows dialog boxes, which are

generally laid out using absolute coordinates in a GUI builder, refuse to be resized!)

Automatic layout can also automatically adapt to font size changes, different widget sets

(e.g., buttons of different size, shape, or decoration), and different labels (which often occur

when you translate an interface to another language, e.g. English to German). These kinds

of changes tend to happen as the application is moved from one platform to another, rather

than dynamically while the program is running; but it’s helpful if the programmer doesn’t

have to worry about them.

Another dynamic change that automatic layout can deal with is the appearance or

disappearance of components -- if the user is allowed to add or remove buttons from a

toolbar, for example, or if new textboxes can be added or removed from a search query.

18

Fall 2006 6.831 UI Design and Implementation 18

Layout Manager Approach

• Layout manager performs automatic layout of

a container’s children

– 1D (BoxLayout, FlowLayout, BorderLayout)

– 2D (GridLayout, GridBagLayout, TableLayout)

• Advantages

– Captures most common kinds of layout
relationships in reusable, declarative form

• Disadvantages

– Can only relate siblings in component hierarchy

Let’s talk specifically about the layout-manager approach used in Java, which evolved from

earlier UI toolkits like Motif and Tcl/Tk. A layout manager is attached to a container, and

it computes the positions and sizes of that container’s children. There are two basic kinds of

layout managers: one-dimensional and two-dimensional.

One-dimensional layouts enforce only one direction of alignment between the components;

for example, BoxLayout aligns components along a line either horizontally or vertically.

BorderLayout is also one-dimensional: it can align components along any edge of the

container, but the components on different edges aren’t aligned with each other at all.

Two-dimensional layouts can enforce alignment in two directions, so that components are

lined up in rows and columns. 2D layouts are generally more complicated to specify

(totally GridBag!), but we’ll see in the Graphic Design lecture that they’re really essential

for many dialog box layouts, in which you want to align captions and fields both

horizontally and vertically at the same time.

Layout managers are a great tool because they capture the most common kinds of layout

relationships as reusable objects. But a single layout manager can make only local

decisions: that is, it computes the layout of only one container’s children, based on the

space available to the container. So they can only enforce relationships between siblings in

the component hierarchy. For example, if you want all the buttons in your layout to be the

same size, a layout manager can only enforce that if the buttons all belong to the same

parent. That’s a difference from the more general constraint system approach to layout that

we’ll see later in this lecture. Constraints can be global, cutting across the component

hierarchy to relate different components at different levels.

19

Fall 2006 6.831 UI Design and Implementation 19

Using Nested Panels for Layout

Another common trick in layout is to introduce new containers (divs in HTML, JPanels in

Java) in the component hierarchy, just for the sake of layout. This makes it possible to use

one-dimensional layout managers more heavily in your layout. Suppose this example is

Swing. A BorderLayout might be used at the top level to arrange the three topmost panels

(toolbar at top, palette along the left side, and main panel in the center), with BoxLayouts to

layout each of those panels in the appropriate direction.

This doesn’t eliminate the need for two-dimensional layout managers, of course. Because a

layout manager can only relate one container’s children, you wouldn’t be able enforce

simultaneous alignments between captions and fields, for example, because using nested

panels with one-dimensional layouts would force you to put them into separate containers.

20

Fall 2006 6.831 UI Design and Implementation 20

Basic Layout Propagation Algorithm

computePreferredSize(Container parent)
for each child in parent,

computePreferredSize(child)

compute parent’s preferred size from children
e.g., horizontal layout,

(prefwidth,prefheight) = (sum(children prefwidth),

max(children prefheight)

layout(Container parent) requires: parent’s size already set
apply layout constraints to allocate space for each child

child.(width,height) = (parent.width / #children, parent.height)

set positions of children
child[i].(x,y) = (child[i-1].x+child[i-1].width, 0)

for each child in parent,

layout(child)

Since the component hierarchy usually has multiple layout managers in it (one for each

container), these managers interact by a layout propagation algorithm to determine the

overall layout of the hierarchy.

Layout propagation has two parts.

First, the size requirements (preferred sizes) of each container are calculated by a bottom-

up pass over the component hierarchy. The leaves of the hierarchy – like labels, buttons,

and textboxes – determine their preferred sizes first, by calculating how large a rectangle

they need to display to display their text label and surrounding whitespace or decorations.

Then each container’s layout manager computes its size requirement by combining the

desired sizes of its children. The preferred sizes of components are used for two things: (1)

to determine an initial size for the entire window, which is what Java’s pack() method does;

and (2) to allow some components to be fixed to their natural size, rather than trying to

expand them or shrink them, and adjust other parts of the layout accordingly.

Once the size of the entire window has been established (either by computing its preferred

size, or when the user manually sets it by resizing), the actual layout process occurs top-

down. For each container in the hierarchy, the layout manager takes the container’s

assigned size (as dictated by its own parent’s layout manager), applies the layout rules to

allocate space for each child, and sets the positions and sizes of the children appropriately.

Then it recursively tells each child to compute its layout.

21

Fall 2006 6.831 UI Design and Implementation 21

How Child Fills Its Allocated Space

OK

space allocated to child

child’s actual size & position

Anchoring

OK
OK

northwest centered

Expanding

OK

Padding

OK

Let’s talk about a few key concepts in layout managers. First, depending on the layout

manager, the space allocated to a child by its container’s layout manager is not always the

same as the size of the child. For example, in GridBagLayout, you have to explicitly say

that a component should fill its space allocation, in either the x or y direction or both (also

called expanding in other layout managers).

Some layout managers allow some of the space allocation to be used for a margin around

the component, which is usually called padding. The margin is added to the child’s

preferred size during the bottom-up size requirements pass, but then subtracted from the

available space allocation during the top-down layout pass.

When a child doesn’t fill its allocated space, most layout managers let you decide how you

want the component to be anchored (or aligned) in the space – along a boundary, in a

corner, or centering in one or both directions. In a sense, expanding is just anchoring to all

four corners of the available space.

Since the boundaries aren’t always visible – the button shown here has a clear border

around it, but text labels usually don’t – you might find this distinction between the space

allocation and the component confusing. For example, suppose you want to left-justify a

text label within the allocated space. You can do it two ways: (1) by telling the label itself

to display left-justified with respect to its own rectangle, or (2) by telling the layout

manager to anchor the label to the left side of its space allocation. But method #1 works

only if the label is expanded to fill its space allocation, and method #2 works only if the

label is not expanded. So subtle bugs can result.

22

Fall 2006 6.831 UI Design and Implementation 22

How Child Allocations Grow and Shrink

Label Text box Label

strut: invisible, fixed-size

component used for adding
whitespace between child

allocations

some children

are fixed-size

glue: invisible, growable

component used for

right-justification

other children grow & shrink

with available space in parent

Now let’s look at how space allocations typically interact. During the top-down phase of

the layout process, the container’s size is passed down from above, so the layout manager

has to do the best it can with the space provided to it. This space may be larger or smaller

than the layout’s preferred size. So layout managers usually let you specify which of the

children are allowed to grow or shrink in response, and which should be fixed at their

preferred size. If more than one child is allowed to take up the slack, the layout manager

has rules (either built in or user-specified) for what fraction of the excess space should be

given to each resizable child.

In Java, growing and shrinking is constrained by two other properties of components:

minimum size and maximum size. So one way to keep a component from growing or

shrinking is to ensure that its minimum size and maximum size are always identical to its

preferred size. But layout managers often have a way to specify it explicitly, as well.

Struts and glue are two handy idioms for inserting whitespace (empty space) into an

automatic layout. A strut is a fixed-size invisible component; it’s used for margins and

gaps between components. Glue is an invisible component that can grow and shrink with

available space. It’s often used to push components over to the right (or bottom) of a

layout.

Sometimes the layout manager itself allows you to specify the whitespace directly in its

rules, making struts and glue unnecessary. For example, TableLayout lets you have empty

rows or columns of fixed or varying size. But BoxLayout doesn’t, so you have to use struts

and glue.

Java has factory methods for struts and glue in the Box class, but even if struts or glue

weren’t available in the toolkit, you could create them easily. Just make a component that

draws nothing and set its sizes (minimum, preferred, maximum) appropriately.

23

Fall 2006 6.831 UI Design and Implementation 23

HTML and CSS Layout

• Left-to-right, wrapping flow is the default

Words in a paragraph (like Swing’s FlowLayout)

• Absolute positioning in parent coordinate

system
#B {

position: absolute;

left: 20px;

width: 50%;

bottom: 5em;

}

• 2D table layout

<table>, <tr>, <td> (like ClearThought’s
TableLayout)

A

B

CSS layout offers three main layout strategies. The first is the default, left-to-right,

wrapping flow typical of web pages. This is what Swing’s FlowLayout also does.

More useful for UI design is absolute positioning, which allows a component’s coordinates

to specified either explicitly (in pixels relative to the parent’s coordinate system) or

relatively (as percentages of the parent). For example, setting a component’s left to 50%

would put it halfway across its parent’s bounding box. Absolute positioning can constrain

any two of the coordinates of a component: left, right, and width. (If it specifies all three,

then CSS ignores one of them.)

Finally, HTML offers a table layout, which is flexible enough to handle most 2D alignments

you’d want. The easiest way to use it is to use the <table> element and its family of related

elements (<tr> for rows, and <td> for cells within a row).

24

Fall 2006 6.831 UI Design and Implementation 24

Constraints

• Constraint is a relationship among

variables that is automatically

maintained by system
•Constraint propagation: When a variable

changes, other variables are automatically
changed to satisfy constraint

Since layout managers have limitations, let’s look at a more general form of declarative UI,

that can be used not only for layout but for other purposes as well: constraints.

A constraint is a relationship among variables. The programmer specifies the relationship,

and then the system tries to automatically satisfy it. Whenever one variable in the

constraint changes, the system tries to adjust variables so that the constraint continues to be

true. Constraints are rarely used in isolation; instead, the system has a collection of

constraints that it’s trying to satisfy, and a constraint propagation algorithm satisfies the

constraints when a variable changes.

In a sense, layout managers are a limited form of constraint system. Each layout manager

represents a set of relationships among the positions and sizes of the children of a single

container; and layout propagation finds a solution that satisfies these relationships.

25

Fall 2006 6.831 UI Design and Implementation 25

Using Constraints for Layout

Label1 Textbox Label2

label1.left = 5

label1.width = textwidth(label1.text, label1.font)

label1.right = textbox.left

label1.left + label1.width = label1.right

textbox.width >= parent.width / 2

textbox.right <= label2.left

label2.right = parent.width

Here’s an example of some constraint equations for layout. This is same layout we showed

a couple of slides ago, but notice that we didn’t need struts or glue here; constraint

equations can do the job instead.

This simple example reveals some of the important issues about constraint systems. One

issue is whether the constraint system is one-way or multiway. One-way constraint

systems are like spreadsheets – you can think of every variable like a spreadsheet cell with a

formula in it calculating its value in terms of other variables. One-way constraints must be

written in the form X=f(X1,X2,X3,…). Whenever one of the Xi’s changes, the value of X

is recalculated. (In practice, this is often done lazily – i.e., the value of X isn’t recalculated

until it’s actually needed.)

Multiway constraints are more like systems of equations -- you could write each one as

f(X1,X2,X3,…) = 0. The programmer doesn’t identify one variable as the output of the

constraint – instead, the system can adjust any variable (or more than one variable) in the

equation to make the constraint become true. Multiway constraint systems offer more

declarative power than one-way systems, but the constraint propagation algorithms are far

more complex to implement.

One-way constraint systems must worry about cycles: if variable X is computed from

variable Y, but variable Y must be computed from variable X, how do you compute it?

Some systems simply disallow cycles (spreadsheets consider them errors, for example).

Others break the cycle by reusing the old (or default) value for one of the variables; so

you’ll compute variable Y using X’s old value, then compute a new value for X using Y.

Conflicting constraints are another problem – causing the constraint system to have no

solution. Conflicts can be resolved by constraint hierarchies, in which each constraint

equation belongs to a certain priority level. Constraints on higher priority levels take

precedence over lower ones.

Inequalities (such as textbox.right <= label2.left) are often useful in specifying layout

26

Fall 2006 6.831 UI Design and Implementation 26

Using Constraints for Behavior

• Input

– checker.(x,y) = mouse.(x,y)

if mouse.button1 && mouse.(x,y) in checker

• Output

– checker.dropShadow.visible = mouse.button1 &&
mouse.(x,y) in checker

• Interactions between components

– deleteButton.enabled = (textbox.selection != null)

• Connecting view to model

– checker.x = board.find(checker).column * 50

Constraints can be used for more general purposes than just layout. Here are a few.

Some forms of input can be handled by constraints, if you represent the state of the input

device as variables in constraint equations. For example, to drag a checker around on a

checkerboard, you constrain its position to the position of the mouse pointer.

Constraints can be very useful for keeping user interface components consistent with each

other. For example, a Delete toolbar button and a Delete command on the Edit menu should

only be enabled if something is actually selected. Constraints can make this easy to state.

The connection between a view and a model is often easy to describe with constraints, too.

(But notice the conflicting constraints in this example! checker.x is defined both by the

dragging constraint and by the model constraint. Either you have to mix both constraints in

the same expression – e.g., if dragging then use the dragging constraint, else use the model

constraint – or you have to specify priorities to tell the system which constraint should win.)

The alternative to using constraints in all these cases is writing procedural code – typically

an event handler that fires when one of the dependent variables changes (like mouseMoved

for the mouse position, or selectionChanged for the textbox selection, or pieceMoved for the

checker position), and then computes the output variable correctly in response. The idea of

constraints is to make this code declarative instead, so that the system takes care of

listening for changes and computing the response.

27

Fall 2006 6.831 UI Design and Implementation 27

Constraints Are Declarative UI

-scrollpane.child.y

scrollpane.child.height – scrollpane.height

scrollbar.thumb.y

scrollbar.track.height – scrollbar.thumb.height

=

This example shows how powerful constraint specification can be. It shows how a

scrollbar’s thumb position is related to the position of the pane that it’s scrolling. (The

pane’s position is relative to the coordinate system of the scroll window, which is why it’s

negative.) Not only is it far more compact than procedural code would be, but it’s

multiway: you can see how moving the thumb should affect the pane, and how moving the

pane (e.g. by scrolling with arrow keys or jumping to a bookmark) should affect the thumb,

so that both remain consistent.

Alas, constraint-based user interfaces are still an area of research, not much practice. Some

research UI toolkits have incorporated constraints (Amulet, Artkit, Subarctic, among

others), and a few research constraint solvers exist that you can plug in to existing toolkits

(e.g., Cassowary). But you won’t find constraint systems in most commercial user interface

toolkits, except in limited ways. The SpringLayout layout manager is the closest thing to a

constraint system you can find in standard Java (it suffers from the limitations of all layout

managers).

But you can still think about your user interface in terms of constraints, and document your

code that way. You’ll find it’s easier to generate procedural code once you’ve clearly stated

what you want (declaratively). If you state a constraint equation, then you know which

events you have to listen for (any changes to the variables in your equation), and you know

what those event handlers should do (solve for the other variables in the equation). Writing

procedural code for the scrollpane is much easier if you’ve already written the constraint

relationship.

