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Lecture 6: Output
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UI Hall of Fame or Shame?

This is Ghostview, a Unix program that displays Postscript files. Ghostview has no scrollbars; 

instead, it scrolls by direct manipulation of the page image – i.e., clicking and dragging on the page 

scrolls it around.  But which way does it scroll?

It turns out that dragging to the left moves the page image to the right – that is, it makes more of the 

page image come into view at the left side of the window.  Does this make sense?  It does, from a 

certain point of view -- if your mental model is a glass window that you’re dragging around on top of 

the page, then pressing on the glass and pushing it to the left should indeed make more of the page 

become visible on the left.  

But if your mental model of the window is as an empty frame, and you’re actually reaching through 

and pushing the page itself around, then pushing it to the left should make more of the page visible 

on the right. That’s the model used by Acrobat Reader, for example.

So two different physical analogies are possible here.  Principles of direct manipulation alone don’t 

help us decide.  And Ghostview at least uses a consistent model –the light gray rectangle 

(underneath the Save Marked button) is a miniature representation of the position of the glass 

window over the page, and you push it around using the same dragging direction that you use on the 

page image itself.
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UI Hall of Fame or Shame?

Xerox Star 

scrollbar

original

Macintosh

scrollbar

current

Macintosh

scrollbar

Let’s look at scrolling some more.  Scrollbars have evolved 

The Xerox Star offered the earliest incarnation of a graphical user interface, and its scrollbar already 

had many of the features we recognize in modern scrollbars, such as a track containing a scrollbar 

thumb (the handle that you can drag up and down). Even its arrow buttons do the same thing – e.g., 

pushing on the top button makes more of the page appear at the top of the window, just like the 

modern scrollbar.  But they’re labeled the opposite way – the top button has a down arrow on it. The 

labels actually refer to the page-pushing model of scrolling – when you click on the top button, the 

page itself moves down.  Alas, this is completely inconsistent with the thumb, which uses the glass-

pane model of scrolling – the thumb represents the glass pane, and you can drag it up and down the 

document.  So the Xerox Star scrollbar couldn’t make up its mind about which model to represent.

Another interesting difference between the Star scrollbar and modern scrollbars are the - and + 

buttons, which move by whole pages.  This functionality hasn’t been eliminated from the modern 

scrollbar; instead, the modern scrollbar just drops the obvious affordance for it.  You can still click 

on the track above or below the thumb in order to jump by whole pages.  In one sense, this is good –

it makes the scrollbar simpler, by forcing the track to do double-duty.  But it also makes the page-

jumping functionality less visible, so new users are unlikely to discover it on their own.

We can also say something about natural mapping here – the arrow buttons are on opposite sides of 

the scrollbar, so their positions map appropriately to the direction that they move the thumb.  (But, 

alas, the Xerox Star’s arrow labels disagree with the natural mapping.)

Another improvement in the scrollbar is that the height of the thumb now indicates what fraction of 

the whole document is visible.
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Today’s Topics

• Output models

• Drawing

• Rasterization

• Color models

Today’s lecture continues our look into the mechanics of implementing user interfaces, by looking at 

output in more detail.

Our goal for these implementation lectures is not to teach any one particular GUI system or toolkit, 

but to give a survey of the issues involved in GUI programming and the range of solutions adopted 

by various systems.  Presumably you’ve already encountered at least one GUI toolkit, probably Java 

Swing.  These lectures should give you a sense for what’s common and what’s unusual in the toolkit 

you already know, and what you might expect to find when you pick up another GUI toolkit.
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Three Output Models

• Components
– Graphical objects arranged in a tree with automatic redraw

– Example: Label object, Line object

– Also called: views, interactors, widgets, controls, retained 
graphics

• Strokes
– High-level drawing primitives: lines, shapes, curves, text

– Example: drawText() method, drawLine() method

– Also called: vector graphics, structured graphics

• Pixels
– 2D array of pixels

– Also called: raster, image, bitmap

There are basically three ways to represent the output of a graphical user interface.

Components is the same as the view hierarchy we discussed last week.  Parts of the display are 

represented by view objects arranged in a spatial hierarchy, with automatic redraw propagating down 

the hierarchy.  There have been many names for this idea over the years; the GUI community hasn’t 

managed to settle on a single preferred term.

Strokes draws output by making calls to high-level drawing primitives, like drawLine, 

drawRectangle, drawArc, and drawText.

Pixels regards the screen as an array of pixels and deals with the pixels directly.

All three output models appear in virtually every modern GUI application.  The component model 

always appears at the very top level, for windows, and often for components within the windows as 

well.  At some point, we reach the leaves of the view hierarchy, and the leaf views draw themselves 

with stroke calls.  A graphics package then converts those strokes into pixels displayed on the screen. 

For performance reasons, a component may short-circuit the stroke package and draw pixels on the 

screen directly. On Windows, for example, video players do this using the DirectX interface to have 

direct control over a particular screen rectangle.

What model do each of the following representations use?  HTML (component); Postscript laser 

printer (stroke input, pixel output); plotter (stroke input and output); PDF (stroke); LCD panel 

(pixel).
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Example: Designing a Graph View

• Component model
– Each node and edge is a component

– A node might have two subcomponents: circle and label

• Stroke model
– Graph view draws lines, rectangles and text

• Pixel model
– Graph view has pixel images of the nodes

A

C

B

Since every application uses all three models, the design question becomes: at which points in your 

application do you want to step down into a lower-level output model?  Here’s an example.  Suppose 

you want to build a view that displays a graph of nodes and edges.

One approach would represent each node and each edge in the graph by a component. Each node in 

turn might have two components, a rectangle and a text label.  Eventually, you’ll get down to the 

primitive components available in your GUI toolkit.  Most GUI toolkits provide a text label 

component; most don’t provide a primitive circle component.  One notable exception is Amulet, 

which has component equivalents for all the common drawing primitives.  This would be a pure 

component model, at least from your application’s point of view – stroke output and pixel output 

would still happen, but inside primitive components that you took from the library.

Alternatively, the top-level window might have no subcomponents.  Instead, it would draw the entire 

graph by a sequence of stroke calls: drawRectangle for the node outlines, drawText for the labels, 

drawLine for the edges.  This would be a pure stroke model.

Finally, your graph view might bypass stroke drawing and set pixels in the window directly.  The 

text labels might be assembled by copying character images to the screen.  This pure pixel model is 

rarely used nowadays, because it’s the most work for the programmer, but it used to be the only way 

to program graphics.

Hybrid models for the graph view are certainly possible, in which some parts of the output use one 

model, and others use another model.  The graph view might use components for nodes, but draw the 

edges itself as strokes.  It might draw all the lines itself, but use label components for the text.
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Issues in Choosing Output Models

• Layout

• Input

• Redraw

• Drawing order

• Heavyweight objects

• Device dependence

Layout: Components remember where they were put, and draw themselves there.  They also support 

automatic layout.  With stroke or pixel models, you have to figure out (at drawing time) where each 

piece goes, and put it there.

Input: Components participate in event dispatch and propagation, and the system automatically does 

hit-testing (determining whether the mouse is over the component when an event occurs) for 

components, but not for strokes.  If a graph node is a component, then it can receive its own click and 

drag events.  If you stroked the node instead, then you have to write code to determine which node 

was clicked or dragged.

Redraw: An automatic redraw algorithm means that components redraw themselves automatically 

when they have to.  Furthermore, the redraw algorithm is efficient: it only redraws components 

whose extents intersect the damaged region.  The stroke or pixel model would have to do this test by 

hand.  In practice, most stroked components don’t bother, simply redrawing everything whenever 

some part of the view needs to be redrawn.

Drawing order: It’s easy for a parent to draw before (underneath) or after (on top of) all of its 

children.  But it’s not easy to interleave parent drawing with child drawing.  So if you’re using a 

hybrid model, with some parts of your view represented as components and others as strokes, then 

the components and strokes generally fall in two separate layers, and you can’t have any complicated 

z-ordering relationships between strokes and components.

Heavyweight objects: Every component must be an object (and even an object with no fields costs 

about 20 bytes in Java). As we’ve seen, the view hierarchy is overloaded not just with drawing 

functions but also with event dispatch, automatic redraw, and automatic layout, so that further bulks 

up the class.  The flyweight pattern used by InterView’s Glyphs can reduce this cost somewhat.  But 

views derived from large amounts of data – say, a 100,000-node graph – generally can’t use a 

component model.

Device dependence: The stroke model is largely device independent.  In fact, it’s useful not just for 

displaying to screens, but also to printers, which have dramatically different resolution.  The pixel 

model, on the other hand, is extremely device dependent.  A directly-mapped pixel image won’t look 

the same on a screen with a different resolution.
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How Output Models Interact

Components

Strokes

Pixels

drawing

rasterization

As we said earlier, almost every GUI program uses all three models.  At the highest level, a typical 

program presents itself in a window, which is a component.  At the lowest level, the window appears 

on the screen as a rectangle of pixels.  So a series of steps has to occur that translates that window 

component (and all the components it contains) into pixels.

The step from the component model down to the stroke model is usually called drawing. We’ll look 

at that first.

The step from strokes down to pixels is called rasterization (or scan conversion). The specific 

algorithms that rasterize various shapes are beyond the scope of this course (see 6.837 Computer 

Graphics instead).  But we’ll talk about some of the effects of rasterization, and what you need to 

know as a UI programmer to control those effects.
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Drawing in the Component Model

• Drawing goes top down

– Draw self (using strokes or pixels)

– For each child component,

• If child intersects clipping region then

– intersect clipping region with child’s bounding box

– recursively draw child with clip region = intersection

A

C

B
clip region

Here’s how drawing works in the component model.  Drawing is a top-down process: starting from 

the root of the component tree, each component draws itself, then draws each of its children 

recursively.  The process is optimized by passing a clipping region to each component, indicating 

the area of the screen that needs to be drawn.  Child components that do not intersect the clipping 

region are simply skipped, not drawn. In the example above, nodes B and C would not need to be 

drawn.  When a component partially intersects the clipping region, it must be drawn – but any 

strokes or pixels it draws when the clipping region is in effect will be masked against the clip region, 

so that only pixels falling inside the region actually make it onto the screen.

For the root component, the clipping region might be the entire screen.  As drawing descends the 

component tree, however, the clipping region is intersected with each component’s bounding box.  

So the clipping region for a component deep in the tree is the intersection of the bounding boxes of 

its ancestors.

For high performance, the clipping region is normally rectangular, using component bounding boxes

rather than the components’ actual shape.  But it doesn’t have to be that way.  A clipping region can 

be an arbitrary shape on the screen.  This can be very useful for visual effects: e.g., setting a string of 

text as your clipping region, and then painting an image through it like a stencil.  Postscript was the 

first stroke model to allow this kind of nonrectangular clip region. Now many graphics toolkits 

support nonrectangular clip regions. For example, on Microsoft Windows and X Windows, you can 

create nonrectangular windows, which clip their children into a nonrectangular region.
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Damage and Automatic Redraw

A

C

B
A

D

B
A

C

B

damaged region

When a component needs to change its appearance, it doesn’t repaint itself directly.  It can’t, because 

the drawing process has to occur top-down through the component hierarchy: the component’s 

ancestors and older siblings need to have a chance to paint themselves underneath it.  (So, in Java, 

even though a component can call its own paint() method directly, you generally shouldn’t do it!)

Instead, the component asks the graphics system to repaint it at some time in the future.  This request 

includes a damaged region, which is the part of the screen that needs to be repainted.  Often, this is 

just the entire bounding box of the component; but complex components might figure out which part 

of the screen corresponds to the part of the model that changed, so that only that part is damaged.

The repaint request is then queued for later.  Multiple pending repaint requests from different 

components are consolidated into a single damaged region, which is often represented just as a 

rectangle – the bounding box of all the damaged regions requested by individual components.  That 

means that undamaged screen area is being considered damaged, but there’s a tradeoff between the 

complexity of the damaged region representation and the cost of repainting. 

Eventually – usually after the system has handled all the input events (mouse and keyboard) waiting 

on the queue -- the repaint request is finally satisfied, by setting the clipping region to the damaged 

region and redrawing the component tree from the root.
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Naïve Redraw Causes Flashing 

Effects

Determine 
damaged region

Redraw parent
(children blink out!)

Redraw children

Object moves

There’s an unfortunate side-effect of the automatic damage/redraw algorithm. If we draw a 

component tree directly to the screen, then moving a component can make the screen appear to flash 

– objects flickering while they move, and nearby objects flickering as well.

When an object moves, it needs to be erased from its original position and drawn in its new position.  

The erasure is done by redrawing all the objects in the view hierarchy that intersect this damaged 

region. If the drawing is done directly on the screen, this means that all the objects in the damaged 

region temporarily disappear, before being redrawn.  Depending on how screen refreshes are timed 

with respect to the drawing, and how long it takes to draw a complicated object or multiple layers of 

the hierarchy, these partial redraws may be briefly visible on the monitor, causing a perceptible 

flicker.
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Double-Buffering

• Double-buffering solves the flashing 

problem

Screen

Memory 
buffer

Double-buffering solves this flickering problem.  An identical copy of the screen contents is kept in 

a memory buffer.  (In practice, this may be only the part of the screen belonging to some subtree of 

the view hierarchy that cares about double-buffering.)  This memory buffer is used as the drawing 

surface for the automatic damage/redraw algorithm. After drawing is complete, the damaged region 

is just copied to screen as a block of pixels.  Double-buffering reduces flickering for two reasons: 

first, because the pixel copy is generally faster than redrawing the view hierarchy, so there’s less 

chance that a screen refresh will catch it half-done; and second, because unmoving objects that 

happen to be caught, as innocent victims, in the damaged region are never erased from the screen, 

only from the memory buffer.

It’s a waste for every individual view to double-buffer itself.  If any of your ancestors is double-

buffered, then you’ll derive the benefit of it. So double-buffering is usually applied to top-level 

windows.

Why is it called double-buffering?  Because it used to be implemented by two interchangeable 

buffers in video memory.  While one buffer was showing, you’d draw the next frame of animation 

into the other buffer.  Then you’d just tell the video hardware to switch which buffer it was showing, 

a very fast operation that required no copying and was done during the CRT’s vertical refresh 

interval so it produced no flicker at all.  
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Stroke Model

• Drawing surface
– Also called drawable (X Windows), GDI (MS Win)

– Screen, memory buffer, print driver, file, remote screen

• Graphics context
– Encapsulates drawing parameters so they don’t have to be 

passed with each call to a drawing primitive

– Font, color, line width, fill pattern, etc.

• Coordinate system
– Origin, scale, rotation

• Clipping region

• Drawing primitives
– Line, circle, ellipse, arc, rectangle, text, polyline, shapes

We’ve already considered the component model in some detail.  So now, let’s look at the stroke 

model.

Every stroke model has some notion of a drawing surface. The screen is only one possible place 

where drawing might go. Another common drawing surface is a memory buffer, which is an array of 

pixels just like the screen.  Unlike the screen, however, a memory buffer can have arbitrary 

dimensions.  The ability to draw to a memory buffer is essential for double-buffering.  Another target 

is a printer driver, which forwards the drawing instructions on to a printer.  Although most printers 

have a pixel model internally (when the ink actually hits the paper), the driver often uses a stroke 

model to communicate with the printer, for compact transmission. Postscript, for example, is a 

stroke model.

Most stroke models also include some kind of a graphics context, an object that bundles up drawing 

parameters like color, line properties (width, end cap, join style), fill properties (pattern), and font.

The stroke model may also provide a current coordinate system, which can be translated, scaled, 

and rotated around the drawing surface.  We’ve already discussed the clipping region, which acts 

like a stencil for the drawing.  Finally, a stroke model must provide a set of drawing primitives, 

function calls that actually produce graphical output.

Many systems combine all these responsibilities into a single object.  Java’s Graphics object is a 

good example of this approach.  In other toolkits, the drawing surface and graphics context are 

independent objects that are passed along with drawing calls.

When state like graphics context, coordinate system, and clipping region are embedded in the 

drawing surface, the surface must provide some way to save and restore the context.  A key reason 

for this is so that parent views can pass the drawing surface down to a child’s draw method without 

fear that the child will change the graphics context.  In Java, for example, the context can be saved 

by Graphics.create(), which makes a copy of the Graphics object.  Notice that this only duplicates the 

graphics context; it doesn’t duplicate the drawing surface, which is still the same.
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Rasterization

• Is (0,0) the center of the top-left pixel, or is it the upper left 
corner of the pixel?
– MS Win: center of pixel

– Java: upper left corner

• Where is line (0,0) – (10,0) actually drawn?
– MS Win: endpoint pixel excluded

– Java Graphics: pen hangs down and right

– Java Graphics2D: antialiased pen, optional ½ pixel adjustments 
made for compatibility

• Where is empty rectangle (0,0) – (10,10) drawn?
– MSWin: connecting those pixels

– Java: extends one row below and one column right

• Where is filled rectangle (0,0) – (10,10) drawn?
– MSWin: 121 pixels

– Java: 100 pixels

When you’re using a stroke model, it’s important to understand how the strokes are actually 

converted into pixels.  Different platforms make different choices.

One question concerns how stroke coordinates, which represent zero-dimensional points, are 

translated into pixel coordinates, which are 2-dimensional squares.  Microsoft Windows places the 

stroke coordinate at the center of the corresponding pixel; Java’s stroke model places the stroke 

coordinates between pixels.

The other questions concern which pixels are actually drawn when you request a line or a rectangle.



15

Fall 2006 6.831 UI Design and Implementation 15

Antialiasing and Subpixel Rendering

Simple Antialiased Subpixel rendering

It’s beyond the scope of this lecture to talk about algorithms for converting a stroke into pixels.  But 

you should be aware of some important techniques for making strokes look good.

One of these techniques is antialiasing, which is a way to make an edge look smoother.  Instead of 

making a binary decision between whether to color a pixel black or white, antialiasing uses a shade 

of gray whose value varies depending on how much of the pixel is covered by the edge.  In practice, 

the edge is between two arbitrary colors, not just black and white, so antialiasing chooses a point on 

the gradient between those two colors.  The overall effect is a fuzzier but smoother edge.

Subpixel rendering takes this a step further.  Every pixel on an LCD screen consists of three discrete 

pixels side-by-side: red, green, and blue.  So we can get a horizontal resolution which is three times 

the nominal pixel resolution of the screen, simply by choosing the colors of the pixels along the edge 

so that the appropriate subpixels are light or dark.  It only works on LCD screens, not CRTs, because 

CRT pixels are often arranged in triangles, and because CRTs are analog, so the blue in a single 

“pixel” usually consists of a bunch of blue phosphor dots interspersed with green and red phosphor 

dots.  You also have to be careful to smooth out the edge to avoid color fringing effects on perfectly 

vertical edges.  And it works best for high-contrast edges, like this edge between black and white.  

Subpixel rendering is ideal for text rendering, since text is usually small, high-contrast, and benefits 

the most from a boost in horizontal resolution.  Windows XP includes ClearType, an implementation 

of subpixel rendering for Windows fonts.  (For more about subpixel rendering, see Steve Gibson, 

“Sub-Pixel Font Rendering Technology”, http://grc.com/cleartype.htm)
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Pixel Model

• Pixel model is a rectangular array of pixels
– Each pixel is a vector (e.g., red, green, blue components), so pixel 

array is really 3 dimensional

• Bits per pixel (bpp)
– 1 bpp: black/white, or bit mask

– 4-8 bpp: each pixel is an index into a color palette

– 24 bpp: 8 bits for each color

– 32 bpp: 8 bits for each color + alpha channel

• Color components (e.g. RGB) are also called channels or bands

• Pixel model can be arranged in many ways
– Packed into words (RGBR GBRG …) or loosely (RGB- RGB- …)

– Separate planes (RRR…GGG…BBB…) vs. interleaved (RGB RGB 
RGB…)

– Scanned from top to bottom vs. bottom to top

Finally, let’s talk in more detail about what the pixel model looks like.

Put simply, it’s a rectangular array of pixels – but pixels themselves are not always so simple.  A 

pixel itself has a depth, so this model is really three dimensional. Depth is often expressed in bits 

per pixel (bpp).  The simplest kind of pixel model has 1 bit per pixel; this is suitable for representing 

black and white images.  It’s also used for bitmasks, where the single-bit pixels are interpreted as 

boolean values (pixel present or pixel missing).  Bitmasks are useful for clipping – you can think of a 

bitmask as a stencil.

Another kind of pixel representation uses each pixel value as an index into a palette, which is just a 

list of colors.  In the 4-bpp model, for example, each of the 16 possible pixel values represents a 

different color.  This kind of representation, often called Indexed Color, was useful when memory 

was scarce; you still see it in the GIF file format, but otherwise it isn’t used much today.

The most common pixel representation is often called “true color” or “direct color”; in this model, 

each pixel represents a color directly.  The color value is usually split up into multiple components: 

red, green, and blue.  (Color components are also called channels or bands; the red channel of an 

image, for example, is a rectangular array of the red values of its pixels.)

A pixel model can be arranged in memory (or a file) in various ways: packed tightly together to save 

memory, or spread out loosely for faster access; with color components interleaved or separated; and 

scanned from the top (so that the top-left pixel appears first) or the bottom (the bottom-left pixel 

appearing first).
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Transparency

• Alpha is a pixel’s transparency

– from 0.0 (transparent) to 1.0 (opaque)

– so each pixel has red, green, blue, and 

alpha values

• Uses for alpha

–Antialiasing

–Nonrectangular images

–Translucent components

–Clipping regions with antialiased edges

Many pixel models have a fourth channel in addition to red, green, and blue: the pixel’s alpha value, 

which represents its degree of transparency.
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BitBlt

• BitBlt (bit block transfer) copies a block of 

pixels from one image to another

– Drawing images on screen

– Double-buffering

– Scrolling

– Clipping with nonrectangular masks

• Compositing rules control how pixels from 

source and destination are combined

– More about this in a later lecture

The primary operation in the pixel model is copying a block of pixels from one place to another –

often called bitblt (pronounced “bit blit”).  This is used for drawing pictures and icons on the screen, 

for example.  It’s also used for double-buffering – after the offscreen buffer is updated, its contents 

are transferred to the screen by a bitblt.

Bitblt is also used for screen-to-screen transfers.  To do fast scrolling, for example, you can bitblt the 

part of the window that doesn’t change upwards or downwards, to save the cost of redrawing it. (For 

example, look at JViewport.BLIT_SCROLL_MODE.)

It’s also used for sophisticated drawing effects.  You can use bitblt to combine two images together, 

or to combine an image with a mask, in order to clip it or composite them together.

Bitblt isn’t always just a simple array copy operation that replaces destination pixels with source 

pixels.  There are various different rules for combining the destination pixels with the source pixels.  

These rules are called compositing (alpha compositing, when the images have an alpha channel), 

and we’ll talk about them in a later lecture.
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Image File Formats

• GIF
– 8 bpp, palette uses 24-bit colors

– 1 color in the palette can be transparent (1-bit alpha channel)

– lossless compression

– suitable for screenshots, stroked graphics, icons

• JPEG
– 24 bpp, no alpha

– lossy compression: visible artifacts (dusty noise, moire patterns)

– suitable for photographs

• PNG
– lossless compression

– 1, 2, 4, 8 bpp with palette

– 24 or 48 bpp with true color

– 32 or 64 bpp with true color and alpha channel

– suitability same as GIF

– better than GIF, but no animation

– IE supports transparent pixels, but not full alpha transparency

Here are a few common image file formats.
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Color Models

• RGB: cube
– Red, green, blue

• HSV: hexagonal cone
– Hue: kind of color

• Angle around cone

– Saturation: amount of pure color
• 0% = gray, 100% = pure color

– Value: brightness
• 0% = dark, 100% = bright

• HLS: double-hexagonal cone
– Hue, lightness, saturation

– Pulls up center of HSV model, so that only white has lightness 1.0 
and pure colors have lightness 0.5

• Cyan-Magenta-Yellow(-Black)
– Used for printing, where pigments absorb wavelengths instead of 

generating them

Now let’s look at how colors are represented in GUI software.

At the lowest level, the RGB model rules.  The RGB model is a unit cube, with (0,0,0) corresponding 

to black, (1, 1, 1) corresponding to white, and the three dimensions measuring levels of red, green, 

and blue.  The RGB model is used directly by CRT and LCD monitors for display, since each pixel 

in a monitor has separate red, green, and blue components.

HSV (hue, saturation value) is a better model for how humans perceive color, and more useful for 

choosing colors in user interface design.  HSV is a cone.  We’ve already encountered hue and value 

in our discussion of visual variables.  Saturation is the degree of color, as opposed to grayness.  

Colors with zero saturation are shades of gray; colors with 100% saturation are pure colors.

HLS (hue, lightness, saturation) is a symmetrical relative of the HSV model, which is elegant.  See 

the pictures on the next page.

Finally, the CMYK (cyan, magenta, yellow, and sometimes black) is similar to the RGB model, but 

used for print colors.
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HSV & HLS

Here are some pictures of the HSV and HLS models.
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Hints for Debugging Output

• Something you’re drawing isn’t 
appearing on the screen.  Why not?

–Wrong place

–Wrong size

–Wrong color

–Wrong z-order

Wrong place: what’s the origin of the coordinate system? What’s the scale?  Where is the component 

located in its parent?

Wrong size: if a component has zero width and zero height, it will be completely invisible no matter 

what it tries to draw– everything will be clipped.  Zero width and zero height are the defaults for 

all components in Swing – you have to use automatic layout or manual setting to make it a more 

reasonable size.  Check whether the component (and its ancestors) have nonzero sizes.

Wrong color: is the drawing using the same color as the background?  Is it using 100% alpha?

Wrong z-order: is something else drawing on top?


