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Lecture 18: 

Experiment Design & Analysis
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UI Hall of Fame or Shame?

Today’s candidate for the Hall of Fame or Shame is adaptive menus, a feature of Microsoft Office.  

Initially, a menu shows only the most commonly used commands.  Clicking on the arrow at the 

bottom of the menu expands it to show all available commands. Adaptive menus track how often a 

user invokes each command, in order to display frequently-used commands and recently-used 

commands.

This interface is striving for a compromise between simplicity (i.e., providing as few features as 

possible) and task analysis (supporting the tasks required by many users, and trying to adapt to the 

common tasks of each individual user).  Both properties are important for usability.  Unfortunately 

they also compete with each other. Adaptive menus are an interesting hybrid technique that’s trying 

to satisfy both.

The downside is lack of predictability.  Because the menu may change in complex and unpredictable 

ways – with new items appearing and underused items disappearing for no visible reason – the user 

can no longer rely on a lot of useful cues to find menu items.  One of these cues that’s lost is spatial 

memory – Paste may be found at different distances down the menu each time the menu appears.  

Another missing cue is context: Paste’s neighbors may change as well.

Another downside is lack of user control. The adaptation happens automatically; the user can’t 

manually fixate or remove items from a menu.

This particular implementation of adaptive menus has some specific usability problems.  When the 

full menu appears, the new items are inserted into place, and there’s very little contrast in the 

graphic design to distinguish between the old items and the new items. So the user has to search 

through the entire menu again.

But this particular implementation addresses other usability problems very well.  When the user is 

hunting through all the menus, looking for a command, the full menu only has to be requested once; 

then all subsequent menus are fully displayed.
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UI Hall of Fame or Shame?

Here’s an alternative approach to providing easy access to high-frequency menu choices: a split 

menu.  You can see it in Microsoft Office’s font drop-down menu. A small number of fonts that 

you’ve used recently appear in the upper part of the menu, while the entire list of fonts is available in 

the lower part of the menu. The upper list is sorted by recency, while the lower part is sorted 

alphabetically.

Split menus strike a nice balance between efficiency and predictability.
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Today’s Topics

• Experiment design

• Error bar analysis

• Statistical testing

Today’s lecture covers some of the issues involved in designing a controlled experiment.  The issues 

are general to all scientific experiments, but we’ll look specifically at how they apply to user 

interface testing.
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Controlled Experiment

• Start with a testable hypothesis

– e.g. Mac menu bar is faster than Windows menu 

bar

• Manipulate independent variables

– different interfaces, user classes, tasks

– in this case, y-position of menubar

• Measure dependent variables

– times, errors, satisfaction

• Use statistical tests to accept or reject the 

hypothesis

Here’s a high-level overview of a controlled experiment.  You start by stating a clear, testable

hypothesis. By testable, we mean that the hypothesis must be quantifiable and measurable. Here’s an 

example of a hypothesis that we might want to test: that the Macintosh menu bar, which is anchored 

to the top of the screen, is faster to access than the Windows menu bar, which is separated from the 

top of the screen by a window title bar.

You then choose your independent variables – the variables you’re going to manipulate in order to 

test the hypothesis.  In our example, the independent variable is the kind of interface: Mac menubar

or Windows menubar.  In fact, we can make it very specific: the independent variable is the y-

position of the menubar (either y = 0  or y = 16, or whatever the height of the title bar is). Other 

independent variables may also be useful.  For example, you may want to test your hypothesis on 

different user classes (novices and experts, or Windows users and Mac users).  You may also want to 

test it on certain kinds of tasks.  For example, in one kind of task, the menus might have an 

alphabetized list of names; in another, they might have functionally-grouped commands.

You also have to choose the dependent variables, the variables you’ll actually measure in the 

experiment to test the hypothesis.  Typical dependent variables in user testing are time, error rate, 

event count (for events other than errors – e.g., how many times the user used a particular command), 

and subjective satisfaction (usually measured by numerical ratings on a questionnaire).

Finally, you use statistical techniques to analyze how your changes in the independent variables 

affected the dependent variables, and whether those effects are significant (indicating a genuine 

cause-and-effect) or not (merely the result of chance or noise). We’ll say a bit more about statistical 

tests later in the lecture, but note that this topic is too large for this course; you should take a statistics 

course to learn more.
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Design of the Menubar Experiment

• Users
– Windows users or Mac users?

– Age, handedness?

– How to sample them?

– Within- or between-subjects? 

• Implementation
– Real Windows vs. real Mac

– Artificial window manager that lets us control menu bar position

• Tasks
– Realistic: word processing, email, web browsing

– Artificial: repeatedly pointing at fake menu bar

• Measurement
– When does movement start and end?

• Ordering
– of tasks and interface conditions

• Hardware
– mouse, trackball, touchpad, joystick?

– PC or Mac?  which particular machine?

Here are some of the issues we’d have to consider in designing this study.

First, what user population do we want to sample?  Does experience matter?  Windows users will be more experienced 

with one kind of menu bar, and Mac users with the other.  On the other hand, the model underlying our hypothesis (Fitts’s

Law) is largely independent of long-term memory or practice, so we might expect that experience doesn’t matter.  But 

that’s another hypothesis we should test, so maybe past experience should be an independent variable that we select when 

sampling.

How do we sample the user population we want?  The most common technique (in academia) is advertising around a 

college campus, but this biases against older users and less-educated users.  Any sampling method has biases; you have to 

collect demographic information, report it, and consider whether the bias influences your data.

Should this be a within-subjects or between-subjects study?  In a within-subjects study, each user will use both the Mac 

menu bar and the Windows menu bar; in the between-subjects study, they’ll use only one.  The biggest question here is, 

which is larger: individual variation between users, or learning effects between interfaces used by the same user?  A 

within-subjects design would probably be best here, since it has higher power, and we want to test expert usage, so learning 

effects should be minimized.

What implementation should we test?  One possibility is to test the menu bars in their real context: inside the Mac 

interface, and inside the Windows interface, using real applications and real tasks.  This is more realistic, but the problem is

now the presence of confounding variables -- the size of the menu bars might be different, the reading speed of the font, the 

mouse acceleration parameters, etc. We need to control for as many of these variables as we can.  Another possibility is 

implementing our own window manager that holds these variables constant and merely changes the position of the menu 

bar.

What tasks should we give the user?  Again, having the user use the menu bar in the context of realistic tasks might provide 

more generalizable results; but it would also be noisier.  An artificial experiment that simply displays a menu bar and cues 

the user to hit various targets on it would provide more reliable results.  But then the user’s mouse would always be in the 

menu bar, which isn’t at all realistic.  We’d need to force the user to move the mouse out of the menu bar between trials, 

perhaps to some home location in the middle of the screen.

How do we measure the dependent variable, time? Maybe from the time the user is given the cue (“click Edit”) to the time 

the user successfully clicks on Edit.

What order should we present the tasks and the interface conditions? Using the same order all the time can cause both 

learning effects (e.g., you do better on the interface conditions because you got practice with the tasks and the study 

protocol during the first interface condition) and fatigue effects (where you do worse on later interface conditions because 

you’re getting tired). 

Finally, the hardware we use for the study can introduce lots of confounding variables.  We should use the same computer 

for the entire experiment – across both users and interface conditions.
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Schematic View of Experiment Design

Process
independent

variables

dependent

variables

unknown/uncontrolled

variables

X

ε

Y

Y = f(X) + ε

Here’s a block diagram to help you visualize what we’re trying to do with experiment design.  Think 

of the process you’re trying to understand (e.g., menu selection) as a black box, with lots of inputs 

and a few outputs.  A controlled experiment twiddles some of the input knobs on this box (the 

independent variables) and observes some of the outputs (the dependent variables) to see how they 

are affected.

The problem is that there are many other input knobs as well (unknown/uncontrolled variables), that 

may affect the process we’re observing in unpredictable ways.  The purpose of experiment design is 

to eliminate the effect of these unknown variables, or at least render harmless, so that we can draw 

conclusions about how the independent variables affect the dependent variables.

What are some of these unknown variables? Consider the menubar experiment.  Many factors might 

affect how fast the user can reach the menubar: the pointing device they’re using (mouse, trackball, 

isometric joystick, touchpad); where the mouse pointer started; the surface they’re moving the mouse 

on; the user’s level of fatigue; their past experience with one kind of menubar or the other.  All of 

these are unknown variables that might affect the dependent variable (speed of access).
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Concerns Driving Experiment Design

• Internal validity

–Are observed results actually caused by 

the independent variables? 

• External validity

–Can observed results be generalized to 

the world outside the lab?

• Reliability

–Will consistent results be obtained by 

repeating the experiment?

Unknown variation is the bugaboo in experiment design, and here are the three main problems it can 

cause.

Internal validity refers to whether the effect we see on the experiment outputs was actually caused 

by the changes we made to the inputs, or caused by some unknown variable that we didn’t control or 

measure.  For example, suppose we designed the menubar experiment so that the Mac menubar

position was tested on an actual Mac, and the Windows menubar position was tested on a Windows 

box.  This experiment wouldn’t be internally valid, because we can’t be sure whether differences in 

performance were due to the difference in the position of the menubar, or to some other (unknown) 

difference in two machines -- like font size, mouse acceleration, mouse feel, even the system timer 

used to measure the performance!  Statisticians call this effect confounding; when a variable that we 

didn’t control has a systematic effect on the dependent variables, it’s a confounding variable.

One way to address internal validity is to hold variables constant, as much as we can: for example, 

conducting all user tests in the same room, with the same lighting, the same computer, the same 

mouse and keyboard, the same tasks, the same training. The cost of this approach is external 

validity, which refers to whether the effect we see can be generalized to the world outside the lab, 

i.e. when those variables are not controlled.  But when we try to control all the factors that might 

affect menu access speed – a fixed starting mouse position, a fixed menubar with fixed choices, fixed 

hardware, and a single user – then it would be hard to argue that our lab experiment generalizes to 

how menus are used in the varying conditions encountered in the real world.

Finally, reliability refers to whether the effect we see (the relationship between independent and 

dependent variables) is repeatable.  If we ran the experiment again, would we see the same effect?  If 

our experiment involved only one trial -- clicking the menubar just once – then even if we held 

constant every variable we could think of, unknown variations will still cause error in the 

experiment.  A single data sample is rarely a reliable experiment.
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How Many Tennis Balls in Each Box?

• Hypothesis: box A has a different number of balls than box B

• Reliability
– Counting the balls manually is reliable only if there are few balls

– Repeated counting improves reliability

• Internal validity
– Suppose we weigh the boxes instead of counting balls

– What if an A ball has different weight than a B ball?

– What if the boxes themselves have different weights?

• External validity
– Does this result apply to all boxes in the world labeled A and B?

A B

Here’s a simple example to illustrate internal validity, external validity, and reliability.

Suppose we have two boxes labeled A and B, and each box has some balls inside. We want to test the 
hypothesis that these two boxes have different numbers of balls.  (For example, maybe box A is a box of 
tennis balls from one manufacturer, and box B is a box from another manufacturer, both the same price, and 
we want to claim that one box is a better deal than the other.) In this case, the independent variable is the 
identity of the box (the brand of the ball manufacturer), and the dependent variable we’re trying to measure 
is the number of balls inside the box.

This hypothesis is testable because we can do measurements on the boxes to test it.  One measurement we 
might do is open the boxes and count the balls inside each one. If we counted 3 balls in one box, and 5 balls in 
the other box, then we’d have strong evidence that A has fewer balls than B.  But if we counted  99 balls in A 
and 101 balls in B, would we be just as confident?  No, because we know that our counting may have errors --
we may skip balls, or we may double-count balls.  If we counted A again, we might come up with 102 balls.  
The reliability of a single measurement isn’t good enough. We can fix this reliability problem by better 
experiment design: counting each box several times, and computing a statistic (a summary of the 
measurements) instead of using a single measurement.  The statistic is often the mean of the measurements, 
but others are possible.

Counting is pretty slow, though, so to make our experiment cheaper to run, suppose we weigh the boxes 
instead.  If box A is lighter than box B, then we’ll say that it has fewer balls in it.  It’s easy to see the possible 
flaws in this experiment design: what if each ball in box A is lighter than each ball in box B?  Then the whole 
box A might be lighter than B even if it has more balls.  If this is true, then it threatens the experiment’s 
internal validity: the dependent variable we’ve chosen to measure (total weight) is a function not only of the 
number of balls in the box, but also of the weight of each ball, and the weight of the ball also varies by the 
independent variable (the identity of the box). 

Suppose the weight of tennis balls is regulated by an international standard, so we can argue that A balls 
should weigh the same as B balls.  But what if box A is made out of metal, and box B is made out of 
cardboard?  This would also threaten internal validity – the weight of the box itself is a confounding variable.  
But now we can imagine a way to control for this variable, by pouring the balls out of their original boxes into 
box C, a box that we’ve chosen, and weighing both sets of balls separately in box C. We’ve changed our 
experiment design so that the weight of the box itself is held constant, so that it won’t contribute to the 
measured difference between box A and box B.

But we’ve only done this experiment with the box A and box B we have in front of us.  What confidence do 
we have in concluding that all boxes from manufacturer A have a different number of balls than those from 
manufacturer B – that if we went to the store and picked up new boxes of balls, we’d see the same difference?  
That’s the question of external validity. 



10

Fall 2006 6.831 UI Design and Implementation 10

Threats to Internal Validity

• Ordering effects
– People learn, and people get tired

– Don’t present tasks or interfaces in same order for all users
– Randomize or counterbalance the ordering

• Selection effects
– Don’t use pre-existing groups (unless group is an independent 

variable)

– Randomly assign users to independent variables

• Experimenter bias
– Experimenter may be enthusiastic about interface X but not Y

– Give training and briefings on paper, not in person

– Provide equivalent training for every interface

– Double-blind experiments prevent both subject and experimenter 
from knowing if it’s condition X or Y
• Essential if measurement of dependent variables requires judgement

Let’s look closer at typical dangers to internal validity in user interface experiments, and some solutions to them.  You’ll 

notice that the solutions come in two flavors: randomization (which prevents unknown variables from having systematic 

effects on the dependent variables) and control (which tries to hold unknown variables constant).

Ordering effects refer to the order in which different levels of the independent variables are applied.  For example, does 

the user work with interface X first, and then interface Y, or vice versa?  There are two effects from ordering: first, people 

learn.  They may learn something from using interface X that helps them do better (or worse) with interface Y.  Second, 

people get tired or bored.  After doing many tasks with interface X, they may not perform as well on interface Y. Clearly, 

holding the order constant threatens internal validity, because the ordering may be responsible for the differences in 

performance, rather than inherent qualities of the interfaces.  The solution to this threat is randomization: present the 

interfaces, or tasks, or other independent variables in a random order to each user.

Selection effects arise when you use pre-existing groups as a basis for assigning different levels of an independent 

variable.  Giving the Mac menubar to artists and the Windows menubar to engineers would be an obvious selection effect.  

More subtle selection effects can arise, however.  Suppose you let the users line up, and then assigned the Mac menubar to 

the first half of the line, and Windows menubar to the second half.  This procedure seems “random”, but it isn’t – the users 

may line up with their friends, and groups of friends tend to have similar activities and interests.  The same thing can 

happens even if people are responding “randomly” to your study advertisement – you don’t know how “random” that really 

is!  The only safe way to eliminate selection effects is honest randomization.

A third important threat to internal validity is experimenter bias. After all, you have a hypothesis, and you’re hoping it 

works out – you’re rooting for interface X.  This bias is an unknown variable that may affect the outcome, since you’re 

personally interacting with the user whose performance you’re measuring.  One way to address experimenter bias is 

controlling the protocol of the experiment, so that it doesn’t vary between the interface conditions. Provide equivalent 

training for both interfaces, and give it on paper, not live.

An even better technique for eliminating experimenter bias is the double-blind experiment, in which neither the subject 

nor the experimenter knows which condition is currently being tested.  Double-blind experiments are the standard for 

clinical drug trials, for example; neither the patient nor the doctor knows whether the pill contains the actual experimental 

drug, or just a placebo. With user interfaces, double-blind tests may be impossible, since the interface condition is often 

obvious on its face.  (Not always, though!  The behavior of cascading submenus isn’t obviously visible.)

Experimenter-blind tests are essential if measurement of the dependent variables requires some subjective judgement. 

Suppose you’re  developing an interface that’s supposed to help people compose good memos. To measure the quality of 

the resulting memos, you might ask some people to evaluate the memos created with the interface, along with memos 

created with a regular word processor.  But the memos should be presented in random order, and you should hide the 

interface that created each memo from the judge, to avoid bias.
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Threats to External Validity

• Population
– Draw a random sample from your real target 

population

• Ecological
– Make lab conditions as realistic as possible in 

important respects

• Training
– Training should mimic how real interface would be 

encountered and learned

• Task
– Base your tasks on task analysis

Here are some threats to external validity that often come up in user studies.  If you’ve done a 

thorough user analysis and task analysis, in which you actually went out and observed the real world, 

then it’s easier to judge whether your experiment is externally valid.

Population asks whether the users you sampled are representative of the target user population.  Do 

your results apply to the entire user population, or only to the subgroup you sampled?  The best way 

to ensure population validity is to draw a random sample from your real target user population.  But 

you can’t really, because users must choose, of their own free will, whether or not to participate in a 

study.  So there’s a self-selection effect already in action.  The kinds of people who participate in 

user studies may have special properties (extroversion? curiosity? sense of adventure? poverty?) that 

threaten external validity.  But that’s an inevitable effect of the ethics of user testing.  The best you 

can do is argue that on important, measurable variables – demographics, skill level, experience –

your sample resembles the overall target user population.

Ecological validity asks whether conditions in the lab are like the real world.  An office environment 

would not be an ecologically valid environment for studying an interface designed for the dashboard 

of a car, for example.

Training validity asks whether the interfaces tested are presented to users in a way that’s realistic to 

how they would encounter them in the real world. A test of an ATM machine that briefed each user 

with a 5-minute tutorial video wouldn’t be externally valid, because no ATM user in the real world 

would watch such a video.  For a test of an avionics system in an airplane cockpit, on the other hand, 

even hours of tutorial may be externally valid, since pilots are highly trained.

Similarly, task validity refers to whether the tasks you chose are realistic and representative of the 

tasks that users actually face in the real world.  If you did a good task analysis, it’s not hard to argue 

for task validity.
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Threats to Reliability

• Uncontrolled variation
– Previous experience

• Novices and experts: separate into different classes, or use only one class

– User differences
• Fastest users are 10 times faster than slowest users

– Task design
• Do tasks measure what you’re trying to measure?

– Measurement error
• Time on task may include coughing, scratching, distractions

• Solutions
– Eliminate uncontrolled variation

• Select users for certain experience (or lack thereof)
• Give all users the same training
• Measure dependent variables precisely

– Repetition
• Many users, many trials
• Standard deviation of the mean shrinks like the square root of N (i.e., quadrupling 

users makes the mean twice as accurate)

Once we’ve addressed internal validity problems by either controlling or randomizing the unknowns, and 

external validity by sampling and experiment protocol design, reliability is what’s left.

Here’s a good way to visualize reliability: imagine a bullseye target.  The center of the bullseye is the true 

effect that the independent variables have on the dependent variables.  Using the independent variables, you 

try to aim at the center of the target, but the uncontrolled variables are spoiling your aim, creating a spread 

pattern. If you can reduce the amount of uncontrolled variation, you’ll get a tighter shot group, and more 

reliable results.

One kind of uncontrolled variation is a user’s previous experience.  Users enter your lab with a whole lifetime 

of history behind them, not just interacting with computers but interacting with the real world.  You can limit 

this variation somewhat by screening users for certain kinds of experience, but take care not to threaten 

external validity when you artificially restrict your user sample.

Even more variation comes from differences in ability – intelligence, visual acuity, memory, motor skills.  The 

best users may be 10 times better than the worst, an enormous variation that may swamp a tiny effect you’re 

trying to detect.

Other kinds of uncontrolled variation arise when you can’t directly measure the dependent variables.  For 

example, the tasks you chose to measure may have their own variation, such as the time to understand the task 

itself, and errors due to misunderstanding the task, which aren’t related to the difficulty of the interface and act 

only to reduce the reliability of the test. Time is itself a gross measurement which may include lots of activities 

unrelated to the user interface: coughing, sneezing, asking questions, responding to distractions.

One way to improve reliability eliminates uncontrolled variation by holding variables constant: e.g., selecting 

users for certain experience, giving them all identical training, and carefully controlling how they interact with 

the interface so that you can measure the dependent variables precisely.  If you control too many unknowns, 

however, you have to think about whether you’ve made your experiment externally invalid, creating an 

artificial situation that no longer reflects the real world.

The main way to make an experiment reliable is repetition.  We run many users, and have each user do many 

trials, so that the mean of the samples will approach the bullseye we want to hit.  As you may know from 

statistics, the more trials you do, the closer the sample mean is likely to be to the true value. (Assuming the 

experiment is internally valid of course!  Otherwise, the mean will just get closer and closer to the wrong

value.)  Unfortunately, the standard deviation of the sample mean goes down slowly, proportionally to the 

square root of the number of samples N.  So you have to quadruple the number of users, or trials, in order to 

double reliability.
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Blocking

• Divide samples into subsets which are more 
homogeneous than the whole set
– Example: testing wear rate of different shoe sole material

– Lots of variation between feet of different kids

– But the feet on the same kid are far more homogeneous

– Each child is a block

• Apply all conditions within each block
– Put material A on one foot, material B on the other

• Measure difference within block
– Wear(A) –Wear(B)

• Randomize within the block to eliminate internal 
validity threats
– Randomly put A on left foot or right foot

Blocking is another good way to eliminate uncontrolled variation, and therefore increase reliability.  

The basic idea is to divide up your samples up into blocks that are more homogeneous than the 

whole set.  In other words, even if there is lots of uncontrolled variation between blocks, the blocks 

should be chosen so that there is little variation within a block.  Once you’ve blocked your data, you 

apply all the independent variable conditions within each block, and compare the dependent 

variables only within the block.

Here’s a simple example of blocking.  Suppose you’re studying materials for the soles of childrens’

shoes, and you want to see if material A wears faster or slower than material B. There’s much 

uncontrolled variation between feet of different children – how they behave, where they live and 

walk and play – but the two feet of the same child both see very similar conditions by comparison. 

So we treat each child as a block, and apply one sole material to one foot, and the other sole material 

to the other foot.  Then we measure the difference between the sole wear as our dependent variable.  

This technique prevents inter-child variation from swamping the effect we’re trying to see.

In agriculture, blocking is done in space.  A field is divided up into small plots, and all the treatments 

(pesticides, for example) are applied to plants in each plot.  Even though different parts of the field 

may differ widely in soil quality, light, water, or air quality, plants in the same plot are likely to be 

living in very similar conditions.

Blocking helps solve reliability problems, but it doesn’t address internal validity.  What if we always 

assigned material A to the left foot, and material B to the right foot?  Since most people are right-

handed and left-footed, some of the difference in sole wear may be caused by footedness, and not by 

the sole material.  So you should still randomize assignments within the block.
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Between Subjects vs. Within Subjects

• “Between subjects” design
– Users are divided into two groups:

• One group sees only interface X

• Other group sees only interface Y

– Results are compared between different groups
• Is mean(xi) > mean(yj)?

– Eliminates variation due to ordering effects
• User can’t learn from one interface to do better on the other

• “Within subjects” design
– Each user sees both interface X and Y (in random order)
– Results are compared within each user

• For user i, compute the difference xi-yi

• Is mean(xi-yi) > 0?

– Eliminates variation due to user differences
• User only compared with self

The idea of blocking is what separates two commonly-used designs in user studies that compare two 

interfaces.  Looking at these designs also gives us an opportunity to review some of the concepts 

we’ve discussed in this lecture.

A between-subjects design is unblocked.  Users are randomly divided into two groups.  These 

groups aren’t blocks!  Why? First, because they aren’t more homogeneous than the whole set – they 

were chosen randomly, after all.  And second, because we’re going to apply only one independent 

variable condition within each group. One group uses only interface X, and the other group uses only 

interface Y.  The mean performance of the X group is then compared with the mean performance of 

the Y group.  This design eliminates variation due to interface ordering effects.  Since users only see 

one interface, they can’t transfer what they learned from one interface to the other, and they won’t be 

more tired on one interface than the other.  But it suffers from reliability problems, because the 

differences between the interfaces may be swamped by the innate differences between users.  As a 

result, you need more repetition – more users – to get reliable and significant results from a between 

subjects design.

A within-subjects design is blocked by user.  Each user sees both interfaces, and the differential 

performance (performance on X – performance on Y) of all users is averaged and compared with 0.

This design eliminates variation due to user differences, but may have reliability problems due to 

ordering effects.

Which design is better? User differences cause much more variation than ordering effects, so the 

between-subjects design needs more users than the within-subjects design.  But the between-subjects 

design may be more externally valid.
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Experiment Analylsis

• Hypothesis: Mac menubar is faster to 

access than Windows menubar

–Design: between-subjects, randomized 

assignment of interface to subject

305340

500560

210220

360400

MacWindows

Suppose we’ve conducted an experiment to compare the position of the Mac menubar (flush against 

the top of the screen) with the Windows menubar (separated from the top by a window title bar).

For the moment, let’s suppose we used a between-subjects design.  We recruited either users, and 

each user used only one version of the menu bar, and we’ll be comparing different users’ times. For 

simplicity, each user did only one trial, clicking on the menu bar just once while we timed their speed 

of access.  The results of the experiment are shown above (times in milliseconds).  Mac seems to be 

faster (343.75 ms on average) than Windows (380 ms).  But given the noise in the measurements –

some of the Mac trials are actually much slower than some of the Windows trials -- how do we know 

whether the Mac menubar is really faster?

This is the fundamental question underlying statistical analysis: estimating the amount of evidence in 

support of our hypothesis, even in the presence of noise.
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Statistical Testing

• Compute a statistic summarizing the 
experimental data

mean(Win)

mean(Mac)

• Apply a statistical test
– t test: are two means different?
– ANOVA (ANalysis Of VAriance): are three or more 

means different?

• Test produces a p value
– p value = probability that the observed difference 

happened purely by chance
– If p < 0.05, then we are 95% confident that there is 

a difference between Windows and Mac

Here’s the basic process we follow to determine whether the measurements we made support the 

hypothesis or not.

We summarize the data with a statistic (which, by definition, is just that: a function computed from a

set of data samples).  A common statistic is the mean of the data, but it’s not necessarily the only 

useful one.  Depending on what property of the process we’re interesting in measuring, we may also 

compute the variance (or standard deviation), or median, or mode (the most frequent value).  Some 

researchers argue that for human behavior, the median is a better statistic than the mean, because the 

mean is far more distorted by outliers (people who are very slow or very fast, for example) than the 

median.

Then we apply a statistical test that tells us whether the statistics support our hypothesis.  Two 

common tests for means are the t test (which asks whether the mean of one condition is different 

from the mean of another condition) and ANOVA (which asks the same question when we have the 

means of three or more conditions).

The statistical test produces a p value, which is the probability that the difference in statisics that we 

observed happened purely by chance.  Every run of an experiment has random noise; the p value is 

basically the probability that the means were different only because of these random factors.  Thus, if 

the p value is less than 0.05, then we have a 95% confidence that there really is a difference.
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Standard Error of the Mean
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4 users for each condition:
Error bars overlap, so can’t

conclude anything

16 users for each condition:
Error bars are disjoint, so

Windows is significantly different 

from Mac

The details of how the t test and ANOVA tests work are outside the scope of this course.  But we can talk 
about a simpler method for judging whether an experiment supports its hypothesis or not, if the statistics 
you’re using are means.

The standard error of the mean is a statistic that measures how close the mean statistic you computed is 
likely to be to the true mean.  The standard error is computed by taking the standard deviation of the 
measurements and dividing by the square root of n, the number of measurements.    (This is derived from the 
Central Limit Theorem of probability theory: that the sum of N samples from a distribution with mean u and 
variance V has a probability distribution that approaches a normal distribution, i.e. a bell curve, whose mean is 
Nu and whose variance is V.  Thus, the average of the N samples would have a normal distribution with mean 
u and variance V/n.  Its standard deviation would be sqrt(V/N), or equivalently, the standard deviation of the 
underlying distribution divided by sqrt(n).)

The standard error is a confidence interval for your computed mean. Think of your computed mean as a 
random selection from a normal distribution (bell curve) around the true mean; it’s random because of all the 
uncontrolled variables and intentional randomization that you did in your experiment. With a normal 
distribution, 68% of the time your random sample will be within +/-1 standard deviation of the mean; 95% of 
the time it will be within +/- 2 standard deviations of the mean.  The standard error is the standard deviation of 
the mean’s normal distribution, so what this means is that if we draw an error bar one standard error above 
our computed mean, and one standard error below our computed mean, then that interval will have the true 
mean in it 68% of the time.  It is therefore a 68% confidence interval for the mean.

If we draw the error bar for both computed means – Windows and Mac – and look at whether those error bars 
overlap or are substantially different, then we can make a quick judgement about whether the true means are 
likely to be different.  Suppose the error bars overlap – then it’s possible that the true means  for both 
conditions are actually the same – in other words, that whether you use the Windows or Mac menubar design 
makes no difference to the speed of access.  But if the error bars do not overlap, then it’s very likely that the 
true means are different.  (How likely?  Suppose the true mean lies somewhere between the two error bars, but 
outside both of them.  Then the probability of seeing the results you did – your computed means so far away 
from the true mean – is 1-(1-0.68)*(1-0.68), which is about 10%.)

The error bars can also give you a sense about the reliability of your experiment, also called the statistical 
power.  If you didn’t take enough samples, your error bars will be large relative to the size of the data.  So the 
error bars may overlap even though there really is a difference between the conditions.  The solution is more 
repetition – more trials and/or more users – in order to increase the reliability of the experiment.

Plotting your data with error bars is the first step you should do after every experiment, to eyeball your results 
and judge whether statistical testing is worthwhile, or whether you need more data.  If you want to publish the 
results of your experiment, you’ll probably need to do some statistical tests as well, like t tests or ANOVAs.  
But your paper should still have plots with error bars in it.  Some researchers even argue that the error-bar 
plots are more valuable and persuasive than the statistical tests (G.R. Loftus, “A picture is worth a thousand p 
values: On the irrelevance of hypothesis testing in the microcomputer age,” Behavior Research Methods, 
Instruments & Computers, 1993, 25(2), 250—256).


