
1

Fall 2006 6.831 UI Design and Implementation 1

Lecture 17: Toolkits

2

Fall 2006 6.831 UI Design and Implementation 2

UI Hall of Fame or Shame?

Source: UI Hall of Shame

Our Hall of Shame candidate for the day is this dialog box from Adaptec Easy CD Creator, which

appears at the end of burning a CD. The top image shows the dialog when the CD was burned

successfully; the bottom image shows what it looks like when there was an error.

The key problem is the lack of contrast between these two states. Success or failure of CD burning

is important enough to the user that it should be obvious at a glance. But these two dialogs look

identical at a glance. How can we tell? Use the squint test, which we talked about in the graphic

design lecture. When you’re squinting, you see some labels, a big filled progress bar, a roundish

icon with a blob of red, and three buttons. All the details, particularly the text of the messages and

the exact shapes of the red blob, are fuzzed out. This simulates what a user would see at a quick

glance, and it shows that the graphic design doesn’t convey the contrast.

One improvement would change the check mark to another color, say green or black. Using red for

OK seems inconsistent with the real world, anyway. But designs that differ only in red and green

wouldn’t pass the squint test for color-blind users.

Another improvement might remove the completed progress bar from the error dialog, perhaps

replacing it with a big white text box containing a more detailed description of the problem. That

would clearly pass the squint test, and make errors much more noticeable.

3

Fall 2006 6.831 UI Design and Implementation 3

UI Hall of Fame or Shame?

Source: UI Hall of Shame

Our second Hall of Shame candidate for the day is this interface for choosing how a list of database

records should be sorted. Like other sorting interfaces, this one allows the user to select more than

one field to sort on, so that if two records are equal on the primary sort key, they are next compared

by the secondary sort key, and so on.

On the plus side, this interface communicates one aspect of its model very well. Each column is a set

of radio buttons, clearly grouped together (both by gestalt proximity and by an explicit raised

border). Radio buttons have the property that only one can be selected at a time. So the interface has

a clear affordance for picking only one field for each sort key.

But, on the down side, the radio buttons don’t afford making NO choice. What if I want to sort by

only one key? I have to resort to a trick, like setting all three sort keys to the same field. The

interface model clearly doesn’t map correctly to the task it’s intended to perform. In fact, unlike

typical model mismatch problems, both the user and the system have to adjust to this silly interface

model – the user by selecting the same field more than once, and the system by detecting redundant

selections in order to avoid doing unnecessary sorts.

The interface also fails on minimalist design grounds. It wastes a huge amount of screen real estate

on a two-dimensional matrix, which doesn’t convey enough information to merit the cost. The

column labels are similarly redundant; “sort option” could be factored out to a higher level heading.

The term “Primary” is not really consistent with “Second” and “Third”; “First” would be simpler.

4

Fall 2006 6.831 UI Design and Implementation 4

Today’s Topics

• Widgets

• Toolkit layering

• Internationalization

5

Fall 2006 6.831 UI Design and Implementation 5

Widgets

• Reusable user interface components

– Also called controls, interactors, gizmos, gadgets

• Widget is a view + controller

– Embedded model

• Application data must be copied into the widget

• Changes must be copied out’

– Linked model

• Application provides model satisfying an interface

• Enables “data-bound” widgets, e.g. a table showing
thousands of database rows, or a combo box with
thousands of choices

Widgets are the last part of user interface implementation techniques that we’ll look at. Widgets are

a success story for user interface software, and for object-oriented programming in general. Many

GUI applications derive substantial reuse from widgets in a toolkit.

Widgets generally combine a view and a controller into a single tightly-coupled object. For the

widget’s model, however, there are two common approaches. One is to fuse the model into the

widget as well, making it a little MVC complex. With this embedded model approach, application

data must be copied into the widget to initialize it. When the user interacts with the widget, the user’s

changes or selections must be copied back out.

The other alternative is to leave the model separate from the widget, with a well-defined interface

that the application can implement.

Embedded models are usually easier for the developer to understand and use for simple interfaces,

but suffer from serious scaling problems. For example, suppose you want to use a table widget to

show the contents of a database. If the table widget had an embedded model, you would have to

fetch the entire database and load it into the table widget, which may be prohibitively slow and

memory-intensive. Furthermore, most of this is wasted work, since the user can only see a few rows

of the table at a time. With a well-designed linked model, the table widget will only request as much

of the data as it needs to display.

The linked model idea is also called data binding.

6

Fall 2006 6.831 UI Design and Implementation 6

Widget Pros and Cons

• Advantages
–Reuse of development effort
•Coding, testing, debugging, maintenance

• Iteration and evaluation

–External consistency

• Disadvantages

–Constrain designer’s thinking

–Encourage menu & forms style, rather than
richer direct manipulation style

–May be used inappropriately

Widget reuse is beneficial in two ways, actually. First are the conventional software engineering

benefits of reusing code, like shorter development time and greater reliability. A widget encapsulates

a lot of effort that somebody else has already put in.

Second are usability benefits. Widget reuse increases consistency among the applications on a

platform. It also (potentially) represents usability effort that its designers have put into it. A

scrollbar’s affordances and behavior have been carefully designed, and hopefully evaluated. By

reusing the scrollbar widget, you don’t have to do that work yourself.

One problem with widgets is that they constrain your thinking. If you try to design an interface using

a GUI builder – with a palette limited to standard widgets – you may produce a clunkier, more

complex interface than you would if you sat down with paper and pencil and allowed yourself to

think freely. A related problem is that most widget sets consist mostly of form-style widgets: text

fields, labels, checkboxes – which leads a designer to think in terms of menu/form style interfaces.

There are few widgets that support direct visual representations of application objects, because those

representations are so application-dependent. So if you think too much in terms of widgets, you may

miss the possibilities of direct manipulation.

Finally, widgets can be abused, applied to UI problems for which they aren’t suited. We saw an

example in Lecture 1 where a scrollbar was used for selection, rather than scrolling.

A great book with tips about how to use common widgets is GUI Bloopers: Don’ts and Dos for

Software Developers and Web Designers, by Jeff Johnson (Morgan Kaufmann, 2000).

7

Fall 2006 6.831 UI Design and Implementation 7

Widgets for 1-of-N Choices

Radio buttons

Drop-down menu

Single-selection
listbox

Toggle buttons

Let’s look at some of the ways widgets can be used to solve common interface problems. We’ll start by
considering choices: asking the user to choose from a set of fixed options.

Suppose we’re designing the interface for an on-campus sandwich delivery service, and we want to ask what
kind of bread the user wants: white, wheat, or rye. This is a 1-of-N choice, where in this case N=3. Here are
the various ways to do it with familiar widgets:

Radio buttons are named after the station preset buttons in old car radios. Pushing one button in popped out
all the others, using a mechanical linkage. (Radio buttons are sometimes called option buttons.) Radio buttons
are the conventional idiom for making 1-of-N selections. They’re fast (all the choices are visible and only one
point-and-click makes the choice), but use a lot of screen real estate as N gets large. If we wanted to ask
which MIT building the sandwich should be delivered to, we probably wouldn’t want to use radio buttons – N
is too big.

Toggle buttons look like ordinary buttons, but if you push them, they toggle back and forth between
depressed and undepressed states. In Java, you can get a set of toggle buttons to behave like radio buttons just
by adding them to a ButtonGroup. Toggle buttons can offer larger targets than radio buttons (Fitts’s Law), or
tiny targets if screen real estate is at a premium (using icons instead of text labels). Toggle buttons are often
used for mode switches, or for 1-of-N choices in toolbars.

A drop-down menu shows the current selection, with an arrow next to it for pulling down the list of N
choices to choose from. A single-selection listbox is a static version of the same thing, where the list of N
choices is always visible, and the chosen item is indicated by a highlight. Drop-down menus are very
compact, but require two pointing operations (point and click to open the list, then point to the new choice),
and possibly scrolling if it’s a long list. Drop-down menus and listboxes often support keyboard access,
however – you can type the first character (or even a prefix) of your choice, and it will jump to it.

All these widgets are useful for 1-of-N choices, but one problem in many toolkits is that they have radically
different APIs – so once you’ve decided on a widget, changing that decision might affect all the code that
interacts with it. In Java, for example, even similar widgets like JList (for single-selection listboxes) and
JComboBox (for drop-down menus) have completely different interfaces for providing the list of choices and
getting and setting the selected item. HTML is a little better -- the <select> element can generate either a
drop-down menu or a listbox using the same code (although web browsers conventionally only give you a
drop-down menu for a 1-of-N choice, reserving listboxes for K-of-N choices). But if you want N radio
buttons instead, you have to radically change your HTML, into N <input type=radio> elements.

Avoid using N checkboxes for 1-of-N choices. Radiobuttons are a visually distinct widget that clearly
communicates that the choices are exclusive (i.e., that you can only select one at a time). Checkboxes fail to
convey this – so that few people probably realize that the Superscript and Subscript checkboxes in the typical
font dialogs are actually exclusive options.

8

Fall 2006 6.831 UI Design and Implementation 8

Widgets for 1-of-2 Choices

• Widgets for 1-of-N choices (with N=2),

plus:

• Avoid:

Checkbox

Toggle button

For the special case where N=2, you can also use a single checkbox or toggle button. Only do this

if it’s a boolean choice, where the alternative (when the checkbox is unchecked or the toggle button

is undepressed) is actually a negation. The checkboxes on the bottom show some of the nasty

ambiguities that can result.

One mistake often seen here is using an ordinary push button for a 1-of-2 choice, where the label of

the button is changed when the user pushes it. This raises serious confusion about what the label

means: is it the current state (am I getting a sandwich right now), or the future state (should I push

this button to get a sandwich)? Even worse would be using this kind of idiom for a 1-of-N choice,

where clicking the button cycles through all the choices. There’s no excuse for that kind of interface,

given the rich set of widgets available for these kinds of choices.

9

Fall 2006 6.831 UI Design and Implementation 9

Widgets for K-of-N Choices

N checkboxes

Multiple-selection
listbox

Two listboxes

Here are widgets commonly used for choose any number of items from a set of N fixed choices.

Checkboxes are a natural way to do this.

A multiple-selection listbox is another way to do it. (Most listbox widgets have a property you can

set that determines whether it should support multiple selection or not.) This approach has a few

problems. First is learnability -- the conventions for multiple selection (click to clear and make one

selection, control-click to toggle additional selections, shift-click to select a range) aren’t visible or

known to all users. Another is errors -- the selection is very fragile. One accidental click can clear a

carefully-created selection, and recovering from the error may take a lot of work if the list of choices

is long.

Two listboxes are still another way: one listbox for the K selected choices, the other listing all N. It

uses lots of screen real estate (more than twice as much as a single listbox), may be slower to use

(hopping between listboxes and buttons, although often this idiom allows double-clicking to move an

item to the other listbox), but on the plus side, it’s far less fragile than multiple selection, and the K

choices you’ve made are clearly visible, rather than being distributed throughout the N items. Here’s

a design question: when the user moves an item over to the K list, should it disappear from the N

list? Maybe not disappear, since that would remove visual search landmarks from the N list; but

some indication in the N list of which items have already been selected would improve the visibility

of system status and reduce errors (like selecting the same item again).

Alas, no toolkit provides a double-listbox like this as a built-in widget, so you generally have to roll

your own.

10

Fall 2006 6.831 UI Design and Implementation 10

Widgets for Commands

• Menubar

• Toolbar

• Context menu (right-click popup menu)

• Push button

• Hyperlink

• Command objects (javax.swing.Action)
– action event handler
– icons and labels
– tooltip description

– enabled state

Many widgets are available for commands.

It’s a good idea to put the same command in multiple widgets (menubar item, toolbar item, context

menu, keyboard shortcut). But it’s not a good idea to put it in different menus in the menubar, or to

use several different labels for the same command, because of consistency.

In most toolkits, the command widgets (unlike the choice widgets) actually have a similar API, so

you can easily use multiple different widgets for the same application command. In Swing, this

interface is the Action interface, and it represents (among other things) an event handler that actually

performs the command, descriptions of the command (like an icon, a label, and a tooltip), and a

boolean flag that indicates whether the command is currently enabled or disabled. Using Actions

allows you to disable all the widgets that might invoke the command with a single line of code.

In general, don’t remove command widgets that can’t be used at the moment from the UI; just

disable them. Removing the widgets slows down visual search, because the user might be relying on

them as landmarks; it also reduces visibility, since the user can’t tell the difference between a

command that doesn’t exist in the application and one that just isn’t available right now.

11

Fall 2006 6.831 UI Design and Implementation 11

Widgets for Window Organization

• 1-of-N panes

–Tabbed panes

–Listbox + changing pane

• Multiple content panes

–Splitters

• Large content panes

–Scroll panes

Most toolkits also have widgets for organizing other widgets and navigating through the

organization.

A common problem is grouping an interface into N pages that can be viewed one at a time. Tabbed

panes are a well-understood idiom for this problem; we’ve seen in an earlier Hall of Shame,

however, that tabs don’t scale well, and are largely limited to the number of tabs you can fit into one

row. A more scalable solution is a table of contents listbox whose single-selection controls which

page is visible.

An application window may have several content panes, often separated by splitters that allow the

user to adjust the share of screen real estate given to each pane. Mail clients like Outlook or

Thunderbird, for example, have one pane for the folder list, another for a message list, and another

for the current message. One design issue to pay attention to keyboard focus and selection. Make

sure that the pane with the keyboard focus displays its selection in a way that is visually

distinguishable from selections in the other panes. Otherwise, actions like Copy, Paste, or Delete

become ambiguous – leading to mode errors.

Content that’s too large to fit in the window will require scrollbars – and scrollpane widgets

fortunately make this easy to handle. Be aware that horizontal scrolling is harder than vertical

scrolling, first because mouse scroll wheels don’t optimize for it (since vertical scrolling is far more

common), and second because reading text with a horizontal scrollbar requires scraping the scrollbar

back and forth. If you have a choice, organize your UI for vertical scrolling only.

Nested scrollpanes are also problematic – a scrollpane inside another scrollpane -- because the inner

scrollbar can’t bring the inner content fully into view. Text areas and listboxes are often nested

inside scrollpanes (like, say, a web browser), and the result may look something like this. Avoid it

when possible.

12

Fall 2006 6.831 UI Design and Implementation 12

Widgets for Dialogs

• Modal dialog box

• Modeless dialog box

• Sidebar

modal sheet
modeless sidebars

Finally, most toolkits provide widgets for creating dialogs – temporary or long-term satellite windows.

Modal dialog boxes are the most common kind of dialog box. They’re called modal because the application
enters a mode in which the only legal actions are interactions with the dialog box – you can’t use any other
part of the application. On Windows, you can’t even move the other windows of the application!

The reason is that modal dialog boxes are often implemented on Windows by entering a new event loop, which
can only handle events for the dialog box; all events for the main window, including the move-window events
that the Windows window manager sends it when the user drags the title bar, are simply queued up waiting for
the second event loop to return.

This behavior, incidentally, makes modal dialog boxes trivial to use for an application programmer, even when
you’re writing single-threaded code: you can just call the dialog box as if it were a function, and the whole
application stops responding until the user fills it out and dismisses it. It’s like a throwback to synchronous
I/O programming: the program pops up a prompt (the dialog box) and waits for the user to answer it, with no
other user actions allowed.

Modal dialogs do have some usability advantages, such as error prevention (the modal dialog is always on top,
so it can’t get lost or be ignored, and the user can’t accidentally change the selection in the main window while
working on a modal dialog that affects that selection) and dialog closure. But there are usability disadvantages
too, chief among them loss of user control, reduced visibility (e.g., you can’t see important information or
previews in the main window), and failures in task analysis might bite you hard (e.g., forcing the user to
remember information from one modal dialog to another, rather than viewing both side-by-side).

On Windows, modal dialogs are generally application-modal – all windows in the application stop responding
until the dialog is dismissed. (The old days of GUIs also had system-modal dialogs, which suspended all
applications.) Mac OS X has a neat improvement, window-modal dialogs, which are displayed as translucent
sheets attached to the titlebar of the blocked window. This tightly associates the dialog with its window, gives
a little visibility of what’s underneath it in the main window – and allows you to interact with other windows,
even if they’re from the same application.

Modeless dialogs don’t prevent using other windows. They’re often used for ongoing interactions with the
main window, like Find/Replace. One problem is that a modeless dialog box can get in the way of viewing or
interacting with the main window (as when a Find/Replace dialog covers up the match). Another problem is
that there’s often no strong visual distinction between a modal dialog and a modeless dialog; sometimes the
presence of a Minimize button is a clue, but it’s not very strong. (This is another advantage of Mac sheets –
the modal sheet is easy to distinguish from a modeless window.)

A modeless dialog may be better represented as a sidebar, a temporary pane in the main window that’s
anchored to one side of the window. Then it can’t obscure the user’s work, can’t get lost, and is clearly
visually different from a modal dialog box. The screenshots here show the Find Files sidebar in Windows
Explorer, and the Find pane (actually anchored to the bottom of the window, not the side) in Firefox.

13

Fall 2006 6.831 UI Design and Implementation 13

Toolkits

• A minimal user interface toolkit provides:

– Output

• Components (view hierarchy)

• Stroke drawing

• Pixel model

– Input

• Event handling

– Widgets

• Buttons, textboxes, etc.

By now, we’ve looked at all the basic pieces of a user interface toolkit: widgets, view hierarchy,

stroke drawing, and input handling. Every modern GUI toolkit provides these pieces in some form.

Microsoft Windows, for example, has widgets (e.g., buttons, menus, text boxes), a view hierarchy

(consisting of windows and child windows), a stroke drawing package (GDI), pixel representations

(called bitmaps), and input handling (messages sent to a window procedure).

14

Fall 2006 6.831 UI Design and Implementation 14

Toolkit Examples

Win32 Java Swing HTML

components windows JComponents elements

strokes GDI Graphics <canvas>

pixels bitmaps Image

input messages listeners Javascript event
window proc handlers

widgets button, menu, JButton, JMenu, <button>,

textbox, … JTextField, … <input>, …

Here’s a comparison of three UI toolkits: low-level Microsoft Windows (which few people program

in anymore); Java Swing; and HTML.

15

Fall 2006 6.831 UI Design and Implementation 15

Toolkit Layering

Motif

XLib

Athena QtGTK+

User interface toolkits are often built on top of other toolkits, sometimes for portability or

compatibility across platforms, and sometimes to add more powerful features, like a richer stroke

drawing model or different widgets.

X Windows demonstrates this layering technique. The view hierarchy, stroke drawing, and input

handling are provided by a low-level toolkit called XLib. But XLib does not provide widgets, so

several toolkits are layered on top of XLib to add that functionality: Athena widgets and Motif,

among others. More recent X-based toolkits (GTK+ and Qt) not only add widgets to XLib, but also

hide XLib’s view hierarchy, stroke drawing, and input handling with newer, more powerful models,

although these models are implemented internally by calls to XLib.

16

Fall 2006 6.831 UI Design and Implementation 16

Cross-Platform Toolkit Layering

MS Windows

AWT

Motif

XLib

Swing

Mac OS

Here’s what the layering looks like for some common Java user interface toolkits.

AWT (Abstract Window Toolkit, usually pronounced like “ought”) was the first Java toolkit.

Although its widget set is rarely used today, AWT continues to provide drawing and input handling

to more recent Java toolkits.

Swing is the second-generation Java toolkit, which appeared in the Java API starting in Java 1.2.

Swing adds a new view hierarchy (JComponent) derived from AWT’s view hierarchy (Component

and Container). It also replaces AWT’s widget set with new widgets that use the new view

hierarchy.

17

Fall 2006 6.831 UI Design and Implementation 17

Cross-Platform Widgets: AWT Approach

• AWT, HTML

–Use native widgets, but only those

common to all platforms

• Tree widget available on MS Win but not X, so

AWT doesn’t provide it

–Very consistent with other platform apps,

because it uses the same code

java.awt.List MSWin List
peer

Cross-platform toolkits face a special issue: should the native widgets of each platform be reused by

the toolkit? One reason to do so is to preserve consistency with other applications on the same

platform, so that applications written for the cross-platform toolkit look and feel like native

applications. This is what we’ve been calling external consistency.

Another problem is that native widgets may not exist for all the widgets the cross-platform toolkit

wants to provide. AWT throws up its hands at this problem, providing only the widgets that occur

on every platform AWT runs on: e.g., buttons, menus, list boxes, text boxes, checkboxes, radio

buttons. That’s about it.

18

Fall 2006 6.831 UI Design and Implementation 18

Cross-Platform Widgets: Swing approach

• Swing, Amulet

–Reimplement all widgets

–Not constrained by least common

denominator

–Consistent behavior for application across

platforms

One reason NOT to reuse the native widgets is so that the application looks and behaves consistently

with itself across platforms – a variant of internal consistency, if you consider all the instantiations of

an application on various platforms as being part of the same system. Cross-platform consistency

makes it easier to deliver a well-designed, usable application on all platforms – easier to write

documentation and training materials, for example. Java Swing provides this by reimplementing the

widget set using its default (“Metal”) look and feel. This essentially creates a Java “platform”,

independent of and distinct from the native platform.

19

Fall 2006 6.831 UI Design and Implementation 19

Pluggable Look-and-Feel

• Swing also reimplements platform look-

and-feel

javax.swing.JList ListUI

delegate
painting

MetalListUI WindowsListUI

install

components &
listeners

But Swing also supports external consistency – you can change the appearance and behavior of its

widgets to make them resemble the native platform widgets. This is possible because each Swing

widget delegates its painting and input handling to a look and feel object. Different sets of look-and-

feel objects copy the appearance and behavior of different platforms, like Windows, Macintosh, and

Motif. Unfortunately there’s a lot involved in copying look and feel, and some of these platforms are

moving targets – so Swing’s Windows look and feel has lagged behind the changes being made in

the Windows environment, making Swing applications stand out.

20

Fall 2006 6.831 UI Design and Implementation 20

Cross-Platform Toolkit Layering

MS Windows

SWT

GTK+

XLib

Mac OS

SWT is IBM’s Standard Widget Toolkit. (Usually pronounced “swit”. Confusingly, the W in SWT

means something different from the W in AWT.) Like AWT, SWT is implemented directly on top

of the native toolkits. It provides different interfaces for widgets, views, drawing, and input

handling.

21

Fall 2006 6.831 UI Design and Implementation 21

Cross-Platform Widgets: SWT Approach

• SWT

–Use native widgets where available

–Reimplement missing native widgets

Recall that AWT (and HTML) only offer widgets that are available on all platforms. SWT takes the

opposite tack; instead of limiting itself to the intersection of the native widget sets, SWT strives to

provide the union of the native widget sets. SWT uses a native widget if it’s available, but

reimplements it if it’s missing, attempting to match the “style” of the platform in the new

implementation as much as possible.

22

Fall 2006 6.831 UI Design and Implementation 22

Cross-Platform Layering on the Web

MS Windows

Firefox

GTK+

XLib

HTML

Mac OS

IE Safari

Web browsers also exhibit this kind of layering. HTML, as a user interface toolkit, takes the AWT

approach to widgets across platforms: it uses the native widgets, and offers only the intersection of

the widgets available on common platforms. (Even fewer, in fact, than AWT: HTML supports

buttons, checkboxes, radio buttons, listboxes, and textboxes, but has no menubar widgets

whatsoever.)

23

Fall 2006 6.831 UI Design and Implementation 23

Internationalization

Another kind of cross-platform compatibility is supporting users who speak different languages and

have different cultural conventions – e.g., different ways to write dates and times, write numbers, or

different units of currency or measurement. Interfaces with international user populations – such as

Microsoft Word, shown here – have to be carefully designed to make them easy to adapt to other

languages and cultures. The process of making a user interface ready for translation is called

internationalization (often called i18n for short – “18” because it replaces 18 characters in the

middle of “internationalization”).

Essentially, internationalization separates the language-specific parts of the interface from the rest of

the code, so that those parts can be easily replaced. The translation is usually done by

nonprogrammers, so their job is easier if the textual messages are separate from the code.

A good translation job is harder than merely knowing what words to substitute (and online translators

like Babelfish and Google Translate can only barely do that, so don’t rely on them!) You can’t

necessarily rely on bilingual members of your design team, either. They may be reasonably fluent in

the other language, but not sufficiently immersed in the culture or national standards to notice all

the places where the application needs to change. You are not the user is especially true in

internationalization.

A good source of information about this problem is Java Internationalization, by Andy Deitsch and

David Czarnecki (O’Reilly, 2001). There’s also a trail in the Java Tutorial about Java’s

internationalization features (http://java.sun.com/docs/books/tutorial/i18n/index.html).

24

Fall 2006 6.831 UI Design and Implementation 24

Challenges of Internationalization

• All user-visible text has to be translated
JButton(“OK”)

g.drawString(“Name:”,…)

• Many languages don’t read left-to-right

–Arabic, Hebrew are right-to-left

–Affects drawing, screen layout, even icons

Here are some of the reasons why internationalization is hard.

First, every piece of text that might be shown to the user is a potential candidate for translation. That

means not just properties of components (like menu items and button labels), but also text drawn

with stroke drawing calls, and text embedded in pixel images (like this one taken from the MIT

EECS web page). Translation can easily change the size or aspect ratio of the text; German labels

tend to be much longer than English ones, for example.

Many scripts are not written left-to-right; Arabic and Hebrew are the most common right-to-left

languages. CJK (Chinese, Japanese, Korean) characters are usually written left-to-right, but can also

appear vertically (top-to-bottom) and occasionally even right-to-left. Reversing the direction of

reading requires reversing the entire layout of your screen, since the user is now accustomed to

starting from the right edge when they scan. It might even affect the “natural” direction of arrow

icons. The picture above shows the Hebrew version of Firefox. Notice that the menu bar is reversed

(it starts from the right, and the rightmost menu is the File menu), the toolbar is reversed, and the

Back button (which is now the rightmost button) is now pointing to the right! The URL box isn’t

reversed, however, because it uses the Latin alphabet, not the Hebrew alphabet. This is another

common wrinkle in right-to-left languages: when they embed foreign words, or Arabic numbers, the

embedded words go in left-to-right order. So the text might be constantly switching direction.

25

Fall 2006 6.831 UI Design and Implementation 25

Challenges of Internationalization

• Character sets and encodings
– ASCII, Latin-1, Unicode, UTF-8

• Sorting (collation) order
– ASCII order isn’t even right for English
– Uppercase/lowercase, accents affect order

– Norwegian: … x y z æ ø å
– Traditional Spanish alphabet: c, ch, d, …, l, ll, m, …

• Numbers
– US/UK 72,350.55
– France 72 350,55

– Germany 72.350,55

• Date/time formatting
– US 10/31/2006 (M/D/Y)

– Everywhere else 31/10/2006 (D/M/Y)

Supporting other languages means you’re not just playing with ASCII anymore. The old 7-bit ASCII

character set only supports English. The 8-bit Latin-1 adds accented characters for Western

European languages among the upper 128 characters, but for serious internationalization, you need

16-bit Unicode, which includes characters from many other alphabets (e.g. Arabic, Hebrew, Cyrillic)

and thousands of CJK ideograms. Java uses Unicode, so chars and Strings in Java can represent text

in all these languages. Note the difference between character sets and fonts: a Unicode character is

simply a number representing a character. It doesn’t actually say how to draw the character; a font

does that. Also, even though you can represent many different alphabets in a single Unicode string,

the font you’re drawing the string with doesn’t necessarily know how to draw all those characters.

Many fonts only have glyphs for a small subset of Unicode.

Although Unicode uses 16-bit numbers to represent characters, the most common encoding for

Unicode text (in files and web pages) is UTF-8, which uses 1, 2, or 3 bytes to represent each

Unicode character. Single bytes are used to represent all the 7-bit ASCII characters, so UTF-8 can be

thought of as an extension to ASCII.

Unicode represents each character by a number, but the ordering of the numbers doesn’t always

match the ordering of the characters (also called collation order). Sorting text with < or

String.compareTo() is almost certainly wrong. It’s even wrong for English: ASCII (and Unicode)

group the uppercase and lowercase letters together, so that the sort order by < would be

ABC…XYZ…abc…xyz…, but every English dictionary would order by AaBbCc…

Similarly, in most European languages, accented characters are sorted with the plain version of the

character, even though the Unicode characters may be nowhere near each other. (And that general

rule is not true in Norwegian, where å actually appears at the end of the alphabet, after z.)

Number formats and date formats also vary – not just between languages, however, but even

between different countries that otherwise share a language. The target for internationalization is

thus typically a language/country pair, or locale, such as US English, UK English, or Canadian

French.

26

Fall 2006 6.831 UI Design and Implementation 26

Challenges of Internationalization

• Color conventions

–White: wedding or funeral?

• Icons

Localizing a user interface requires knowing about the cultural associations attached to symbols or

colors, and making sure you don’t send the wrong message.

For example, colors have different meanings in different cultures. In East Asia, particularly China,

white is associated with death, and is used as a color theme for funerals. In the West, on the other

hand, white is a symbol of purity, and brides wear white at their weddings. A wedding planner web

site with festive white decorations might be interpreted quite differently by an Asian users.

Icons must also be carefully chosen, or replaced when the interface is localized. Metaphorical icons

that refer to everyday objects like mailboxes stop signs aren’t necessarily recognizable, because the

objects may look different in different countries. (Stop signs are actually pretty universal, however

– I had to look hard to find a stop sign that wasn’t a red octagon, like this Japanese inverted triangle.)

Hand gestures pictured as icons may actually be offensive in some countries. And visual puns are

always a bad idea – an English-speaking designer might think it’s cute to use a picture of a table (the

furniture) to represent table (the 2D grid), because the words are the same in English. But the words

in German are tisch (furniture) and tabelle (grid), so a German may find the joke incomprehensible.

27

Fall 2006 6.831 UI Design and Implementation 27

Toolkit Support for Internationalization

• Message files

– Separates messages from source code

– Human translators generate a message file for
each supported locale

• Skins

– Separates images, icons, presentation rules from

source code

• Formatting support

– Numbers, dates, currency

• Bidirectional layout

Modern UI toolkits provide support for internationalization. Java, for example, has a framework

called resource bundles that allow textual messages to be stored separately from the code, but as

loadable resources in JAR files, so that an application can be localized simply by replacing those text

messages. The messages are referred to by names, such as bundle.getString(“file-menu-label”).

